Відгук
офіційного опонента Маслова Володимира Петровича
на дисертацію Яценко Ірина В’ячеславівна
за темою “Закономірності впливу електронно-променевої технології на
експлуатаційні характеристики оптичних елементів”, подану на здобуття наукового
ступеня доктора технічних наук
за спеціальністю 05.11.07 – оптичні прилади та системи.

Дисертація Яценко І. В. присвяченя розвитку теоретичних та практичних
підходів в експлуатаційних характеристиках оптичних елементів оптико-
електронних приладів на основі встановлених закономірностей впливу режимів
електронно-променевої технології, математичних моделей, спеціалізованого
програмного забезпечення, що являють собою технологічні основи керування
якісними характеристиками поверхні та поверхневих шарів елементів.

Актуальність теми досліджень, зв’язок з науковими програмами, планами,
темами. Сучасний рівень розвитку оптико-електронного приладобудування висуває
підвищені вимоги до експлуатаційних характеристик їх оптичних елементів, які
впливають на техніко-експлуатаційні характеристики приладів, зокрема точність та
діапазони вимірювань, ймовірність безвідмовної роботи при експлуатації та ін.

Широке використання традиційних методів підготовки й обробки поверхонь
оптичних елементів (механічних, хімічних, хіміко-механічних), а також сучасних
методів, які використовують концентровані потоки енергії (сфокусовані потоки
іонів, лазерне випромінювання, протоки низькотемпературної плазми тощо)
показало, що неможливо одержати одночасно чистоту та бездефектну поверхню,
та також бездефектні поверхневі шари, що призводить до погіршення техніко-
експлуатаційних характеристик оптико-електронних приладів.

Найбільш зручним, екологічно чистим та легкокерованим способом обробки оптичних елементів є
електронно-променевий метод, який дозволяє за допомогою рухомого електронного
променю шляхом обробки нецезійних елементів з оптичного скла отримувати
поверхні високої чистоти з мінімальною шорсткістю, а також отримувати поверхні
з підвищеною мікротвердістю.

Однак широке використання електронно-променевої технології у оптико-
elектронному приладобудуванні стримується відсутністю даних про закономірності
впливу режимів електронно-променевої обробки на експлуатаційні характеристики
оптичних елементів, керування якими дозволяє покращувати техніко-експлуатаційні
характеристики приладів, зокрема точність та діапазони вимірювань, ймовірність
безвідмовної роботи при експлуатації та ін. В дисертаційній роботі Яценко І. В.
встановлено закономірності впливу режимів електронно-променевої технології на
експлуатаційні характеристики оптичних елементів (мікротвердість поверхні,
міцність поверхневих шарів, стійкість до зовнішніх впливів та механічних ударів тощо), визначено діапазони їх зміни, в межах яких відбувається покращення вказаніх характеристик, що дозволяє підвищувати техніко-ekсплуатаційні характеристики оптико-електронних приладів. Тема роботи є важливою та актуальною, пов'язана з тематикою науково-дослідних робіт: “Діагностика функціональних шарів у виробах мікрооптики і наноелектроніки, отриманих електронними технологіями” (№ ДР 0106U004500); “Технологічні основи електронної нанообробки поверхонь виробів з п’єзоелектричних керамік” (№ ДР 0109U002738); “Отримання та дослідження зносостійких покриттів на поверхнях оптичних виробів спеціального призначення комбінованим методом термічного випаровування” (№ ДР 0111U000852); “Технологічні основи створення теплоізоляційних нанорозмірних оксидних покриттів на поверхнях оптичних діелектриків комбінованим термовакуумним осаджуванням” (№ ДР 0112U001701).

Оцінка змісту та оформлення. Дисертаційна робота Яценко І. В. складається з анотації, змісту, вступу, п'яти розділів, висновків, списку використаних літературних джерел та додатків. Повний обсяг роботи складає 440 сторінок, з обсягом основного тексту 278 сторінок. Дисертація містить 149 рисунків, 32 таблиці, список використаних літературних джерел з 326 найменувань займає 32 сторінки та 7 додатків на 93 сторінках.

У анотації представлено основні результати роботи та список робіт автора за темою дисертації.

У вступі розкрито суть та стан наукової проблеми, обґрунтовано актуальність дисертаційної роботи, сформульовано мету та завдання досліджень, об’єкт, предмет та методи досліджень, наведено наукову новизну та практичне значення одержаних результатів, зазначено особистий внесок здобувача в опублікованих роботах.

У першому розділі виконано огляд вітчизняних та зарубіжних літературних джерел, наведено аналіз вимог, що передбачаються до експлуатаційних характеристик оптичних елементів, які прийнято у оптико-електронному приладобудуванні, а також причин їх погіршення з врахуванням впливу термічних та механічних впливів, умов експлуатації надзвукової техніки тощо, розкрито суть та стан науково-технічної проблеми, сформульовано мету та завдання досліджень.

У другому розділі представлено методики експериментальних досліджень, обґрунтування та вибір об’єктів досліджень, опис експериментальних установок та методик, математичне моделювання і обробка експерименту.

Наведено загальну методику виконання експериментальних та теоретичних досліджень. Представлена опис використаних сучасних методів фізико-хімічного аналізу, методів математичного моделювання, чисельно-аналітичні методів розв’язання задач тепло- та масоперенесення, задач термопружності та математичної статистики, гідрогазодинаміки, а також спеціалізовані пакети
прикладних програм, що дозволяють на сучасних ПК вирішувати вказані вище задачі.

Для електронно-променевої обробки поверхневих шарів оптичних елементів використовували розроблене технологічне обладнання, яке відрізняється від існуючих електронно-променевих установок технологічною оснасткою для автоматизованого вимірювання та контролю температури оброблюваної поверхні, а також зондування електронного променю, що захищене патентами України (патент № 4177, патент № 91523).

Для моделювання зовнішніх термічних та механічних впливів, а також умов експлуатації надзвукової техніки на оптичні елементи у роботі використовувались стандартні установки: установка, що моделює підвищені температури нагріву та зовнішнього тиску; установка, що моделює надзвуковий обдув потоком повітря та віссесиметричне обертання.

У третьому розділі наведено результати експериментальних досліджень з встановлення закономірностей впливу електронно-променевої технології на експлуатаційні характеристики оптичних елементів, режимів їх обробки, в межах яких відбувається покращення вказаних характеристик. Встановлено, що для діапазонів зміни теплового впливу електронного променя \(F_n = 7 \cdot 10^6 ... 8 \cdot 10^8 \text{ Вт/м}^2 \) та швидкості його переміщення \(V = 5 \cdot 10^3 ... 5 \cdot 10^2 \text{ м/с} \) відбувається покращення наступних експлуатаційних характеристик оптичних елементів: підвищення мікротвердості поверхні та міцності поверхневих шарів, збільшення спектрального коефіцієнта пропускання, стійкості до зовнішніх термічних та механічних впливів, умов експлуатації надзвукової техніки тощо.

У четвертому розділі представлено результати теоретичних досліджень з визначення критичних значень параметрів зовнішніх термічних впливів (теплових потоків, швидкостей обдуву потоком повітря, часів їх дії та ін.) на оптичні елементи різної геометричної форми при їх експлуатації, перевищення яких призводить до погіршення їх експлуатаційних характеристик та подальшого руйнування, що дозволяє шляхом контролю вказаних критичних параметрів, уникати появи цих негативних явищ.

У п’ятому розділі на базі проведених експериментальних та теоретичних досліджень представлено розроблені нові методи покращення експлуатаційних характеристик оптичних елементів за допомогою електронно-променевої технології, визначення та контролю критичних значень параметрів зовнішніх термічних та механічних впливів на елементи, як дозволяють підвищувати техніко-експлуатаційні характеристики оптико-електронних приладів.

Розроблено новий метод обробки складних криволінійних поверхонь оптичних елементів та створення на них функціональних мікропрофілів різної геометричної
форми на базі систем нерухомих дискретно розташованих електронних променів, що дозволяє шляхом оптимального керування технологічними параметрами установки (кількістю променів, їх струмами, прискорюючими напругами та відстанями до оброблюваних поверхонь) створювати мікрооптичні деталі для оптико-електронних приладів.

Також представлено перспективні напрямки подальшого розвитку електронно-променевої технології у точному приладобудуванні: електронно-променева обробка поверхонь елементів з п’єзоелектричних керамік, нанорозмірних оксидних покриттів на оптичних елементах з метою покращення їх експлуатаційних характеристик.

У висновках узагальнені наукові та практичні результати дисертаційної роботи.

У додатках представлено використане у роботі спеціалізоване програмне забезпечення, а також наведено документи про практичне впровадження результатів.

Автореферат відповідає змісту дисертації та повно відображає основні результати, які отримано здобувачем.

Результати наукових досліджень, за якими здобувач захистив кандидатську дисертацію, не виносяться на захист докторської дисертації.

Наукова новизна отриманих результатів полягає у наступному.

1. Вперше встановлено закономірності впливу режимів електронно-променевої технології на фізико-механічні властивості поверхневих шарів оптичних елементів, в межах яких відбувається: очищення поверхні елементів від дефектів, підвищення класу чистоти, зменшення мікрошорсткості, збереження площі; зміна хімічного складу та структури поверхневих шарів; виникнення стискаючих напружень в поверхневих шарах елементів з оптичної кераміки, що призводить до утворення зміщених шарів.

2. Вперше отримано закономірності впливу електронно-променевої технології на експлуатаційні характеристики оптичних елементів та визначені режими, в межах яких відбувається їх покращення: збільшення мікротвердості поверхні у 2...3 рази, збільшення спектрального коефіцієнта пропускання на 4...7%, підвищення стійкості оптичних елементів до зовнішніх теплових та механічних впливів тощо.

3. Розроблено уточнені математичні моделі зовнішнього нагріву оптичних елементів різної геометричної форми та розмірів (плоско-паралельні пластини; прямокутні, циліндричні та сферичні елементи) у частині врахування температурних залежностей їх теплофізичних характеристик, що дозволяють більш точно визначати критичні значення зовнішніх теплових потоків та часів їх впливу.

4. Розроблено нову математичну модель термоударної дії зовнішнього потоку повітря на оптичний обтічник в умовах експлуатації надзвукової техніки, що
враховує: геометричну форму об'ємника у вигляді півсферичної оболонки; розподіл зовнішнього теплового потоку вздовж поверхні об'ємника в залежності від режиму отбігання; температурні залежності теплофізичних характеристик оптичного матеріалу (об'ємної теплоємності, коефіцієнта теплопровідності), яка дозволяє визначати критичні значення швидкостей потоку та часів його впливу, а також місця розташування небезпечних ділянок на поверхні об'ємника, які піддаються максимальному нагріву.

5. Запропоновано новий науково-обґрунтований метод електронно-променевої розробки криволінійних поверхонь оптичних елементів та формування на них функціональних мікропрофілів різної геометричної форми за допомогою системи нерухомих дискретно розташованих електронних променів шляхом оптимізації технологічних параметрів установки (кількості променів, їх струмів, прискорюючих напруг та відстаней до оброблюваних поверхонь), що дозволяє створювати різні мікрооптичні деталі для оптико-електронних приладів.

6. Розроблено нові методи покращення експлуатаційних характеристик оптичних елементів за допомогою електронно-променевої технології, визначення та контролю критичних значень параметрів зовнішніх термічних та механічних впливів на елементи, які дозволяють підвищувати техніко-експлуатаційні характеристики оптико-електронних приладів.

Ступінь обґрунтованості та достовірності наукових положень, висновків та рекомендацій, сформульованих у дисертації. Викладені в дисертаційній роботі положення, а також отримані автором теоретичні та практичні результати роботи мають належний ступінь обґрунтованості. Достовірність викладених в дисертації основних наукових положень висновків та результатів, отриманих здобувачем, забезпечується коректними постановками задач, методами розв'язку та експериментальною перевіркою розроблених моделей, а також даними, отриманими при впровадженні результатів дисертаційної роботи, достатньою апробацією на науково-практичних конференціях.

Практичне значення наукових положень, висновків та рекомендацій, сформульованих у дисертації. Результати дисертаційного дослідження становлять наукову основу для розробки, технічної реалізації та впровадження у виробництво технології електронно-променевої обробки оптичних елементів оптико-електронних приладів з метою покращення їх експлуатаційних характеристик. Практична цінність отриманих результатів полягає в наступному:

- розширене технологічні можливості застосування електронно-променевої обробки оптичних елементів в оптико-електронному приладобудуванні;
- створено науково-технічну базу електронно-променевої обробки, яка може широко використовуватися у оптичній промисловості, а також в технологіях інтегральної та волоконної оптики, оптоелектроніці тощо;
розроблено методи, що покращують експлуатаційні характеристики оптичних елементів в умовах зовнішніх термічних та механічних впливів; метод підвищення експлуатаційних характеристик оптичних елементів приладів шляхом покращення стану їх поверхневих шарів за допомогою електронно-променевої технології; метод визначення та контролю критичних значень параметрів зовнішніх впливів, який дозволяє попереджати погіршення експлуатаційних характеристик оптичних елементів;

створено модифіковане електронно-променеве технологічне обладнання, що має спеціалізовану програмно керовану оснастку для автоматизованого вимірювання та контролю температури оброблювальної поверхні та зондування електронного променю, яке захищене патентами України (№ 4177, № 91523) та впроваджено у практику експериментальних досліджень.

Результати теоретичних та експериментальних досліджень, а також розроблені методи знайшли практичне використання та впровадження (підтверджено актами впровадження) на підприємствах України (КП СПБ "Арсенал", Інститут фізики напівпровідників ім. Лашкарьова (м. Київ), ПраТ "Авікос" (м. Львів), ДПНВК "Фотоприлад" (м. Черкаси), ПМПП "Фотоніка Плюс" (м. Черкаси)) та за кордоном (ДНВО "Центр" НАНБ (м. Мінськ, Білорусь), ІТМП НАНБ ім. А. В. Ликова (м. Мінськ, Білорусь), ТДВ "Мікротестмашина" (м. Гомель, Білорусь)).

Впровадження засобів контролю та технологічних рекомендацій дозволило: підвищити точність та розширити діапазон вимірювання дальністі імпульсних лазерних далекомірів на 7...15 %; збільшити ймовірність безвідмовної роботи оптичних обтічників 1Ч-приладів та волоконно-оптичних світловодів лазерних медичних приладів при експлуатації на 10...20 %; отримати економічний ефект 360 тис. гривень.

Отримані результати також знайшли застосування в учебному процесі на кафедрі виробництва приладів Національного технічного університету України "Київський політехнічний інститут імені Ігоря Сікорського" у лекційних курсах "Оптичні та медичні прилади", "Матеріалознавство", "Нанотехнології в медичному приладобудуванні" та у Черкаському державному технологічному університеті в лекційних курсах "Технологія приладобудування", "Проектування оптико-електронних приладів", "Методи обробки поверхонь", "Фізико-хімічні основи обробки матеріалів КПЕ" (підтвердило актами впровадження).

Повнота викладу основних результатів у наукових виданнях та її апробація. Основні результати дисертаційної роботи відображено у 59 наукових працях, серед яких 1 монографія, 36 статей, у тому числі 9 одноосібних, у провідні фахових виданнях, з них 11 статей у іноземних виданнях, 13 статей у видання України, що включено до міжнародних науково-метричних баз; 2 патенти Україні на винахід, 20 доповідей та тез доповідей.
Відповідність дисертаційної роботи спеціальності. Зміст дисертаційної роботи відповідає паспорту спеціальності 05.11.07 – оптичні прилади та системи, та напрямку досліджень: системні дослідження технологій в оптичному приладобудуванні.

Заявження до роботи

До недоліків та зауважень по дисертації І. В. Яченко можна віднести наступні.

1. Не повністю розкрито можливості розробленої електронно-променевої установки: не ясно, чи можна її використовувати при обробці інших матеріалів, крім діелектричних, наприклад, напівпровідників, карбідів, металів, їх сплавів, а також деталей з монокристалів.

2. Недостатньо повно викладено метод обробки оптичних елементів системою нерухомих одиничних електронних променів.

3. Слід було б більш докладно розглянути стійкість оптичних елементів, які оброблені електронним променем, до зосереджених механічних ударів.

4. В дисертації не достатньо висвітлене фізичне обґрунтування точності геометричної форми оптичних деталей при електронно-променевій обробці.

5. Для скорочення об’єму дисертації слід було б скоротити виведення розрахункових формул, результати розрахунків, об’єднати деякі таблиці та графіки, розмістити їх у додатках.

6. Графічні зображення в дисертаційній роботі: рис. 4.12 (стор. 186), рис. 4.15 (стор. 188), рис. 4.18 (стор. 191), рис. 4.35 (стор. 228), рис. 4.36 (стор. 229), рис. 4.37 (стор. 230), рис. 4.49 та рис. 4.50 (стор. 235), а також в авторефераті рис. 12 стор. 18 бажано перенести вісь абсцис униз кожного графіка для покращення сприйняття.

Зазначені зауваження не знижують загальну позитивну оцінку дисертаційної роботи Яченко Ірини В’ячеславівни.

Відповідність дисертації встановленим вимогам і загальні висновки. На підставі вивчення дисертації, автореферату та наукових праць здобувача, які опубліковано за темою дисертації, наукові результати та висновки, що отримано автором, можна вважати вірними та оцінити позитивно.

Дисертаційна робота Яченко І. В. є грунтовним науковим дослідженням, в якому вирішується важлива науково-технічна проблема покращення експлуатаційних характеристик оптичних елементів оптико-електронних приладів на основі встановлених закономірностей впливу режимів електронно-променевої технології, математичних моделей, спеціалізованого програмного забезпечення, що є технологічними основами керування якісними характеристиками поверхні та поверхневих шарів елементів.

Робота відповідає спеціальності 05.11.07 – оптичні прилади та системи.

Зміст автореферату ідентичний основним положенням дисертаційної роботи.
Вважаю, що дисертаційна робота відповідає вимогам п. 9, 10 «Порядку присудження наукових ступенів», затвердженого постановою Кабінету Міністрів України від 24 липня 2013 р. № 567, які висуваються до докторських дисертацій, а її автор Яценко Ірина В'ячеславівна заслуговує присудження наукового ступеня доктора технічних наук за спеціальністю 05.11.07 — оптичні прилади та системи.

Офіційний опонент, завідувач відділу фізико-технологічних основ сенсорного матеріалознавства Інституту фізики напівпровідників ім. В. С. Лашкарьова НАН України, д. т. н., професор

Підпис затверджую
Вчений секретар Інституту фізики напівпровідників ім. В.С. Лашкарьова
д.х.н., професор

В. П. Маслов

В.М. Томашик