NATIONAL TECHNICAL UNIVERSITY OF UKRAINE
“IGOR SIKORSKY KYIV POLYTECHNIC INSTITUTE”,
MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL TECHNICAL UNIVERSITY OF UKRAINE
“IGOR SIKORSKY KYIV POLYTECHNIC INSTITUTE”,
MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

Qualifying Scientific

work as a manuscript

XU JIASHU
UDC 004.032.26
DISSERTATION
RESEARCH AND DEVELOPMENT OF SELF-SUPERVISED VISUAL
FEATURE LEARNING BASED ON NEURAL NETWORKS
121 Software engineering
12 Information Technology

Submitted for the attainment of the Doctor of Philosophy degree

The dissertation contains the results of personal research. The use of ideas, results,
and texts from other authors are accompanied by references to the respective sources.

Uit

Scientific Supervisor: Sergii Stirenko, Dr. Tech. Sc., Professor.

Kyiv —2023

AHOTANIA

Crou I[3awy. JlocnimkeHHs Ta po3poOka caMOHaBYaHHS Bi3yaJbHUM
0COOJMBOCTSIM Ha OCHOBI HEHMPOHHUX Mepex. - KBamidikaiiiina HaykoBa mpaiisi Ha
MpaBax PyKOIUCY.

Hucepranist Ha 3700yTTS HAYKOBOTO CTymeHs JokTtopa ¢uiocodii 3a
cnetianbHicTIO 121 - [H3KeHepis mporpaMHoro 3abesneueHHs ta 12 - [ndopmaniitai
TexHonorii. - HamonanbHuit TexHIYHUN yHiBepcuTeT VYkpainu "KuiBcbkuid
noiiTexHiyHui iHcTUTYT iMeHi1 Iropst Cikopebkoro", Kuis, 2023.

[ls pucepTamis NOpUCBAYEHA NOTIUOJIECHOMY JOCHIIKEHHIO PO3pOOKH Ta
BIPOBA/IPKCHHSI QJITOPUTMIB CAMOHABYAHHS, IO SIBISIOTHCA YACTUHOK TEXHIK
HEKOHTPOJHLOBAHOTO HAaBYaHHS, SKI (DYHKIIOHYIOTH 0€3 MOTpeOM B MapKOBAaHUX
nanux. L1 aaroputMu 0cOOJIMBO BOpaBHI y NONEPEAHHLOMY HaBYaHHI MOJEEH
HEKOHTPOJIbOBAHUM CIIOCOOOM, a OTPUMaHI MOJEII MOKAa3yKTh PE3yJbTATUBHICTS,
MOPIBHSIHHY 3 1X KOHTPOJIbOBAHUMH aHAJIOTAaMU y IIMPOKOMY CIIEKTPl 3aCTOCYBaHb.
Ileit MmeTo 0COOIMBO KOPUCHHM, OCKITBKM BIH Ma€ Ha MET1 3MEHIIUTH 3aJICKHICTh
Bil OOIIMPHOTO MapKyBaHHS JaHUX, XapaKTEpPHOTO Jig MapaJurM IJIHOOKOTO
HaBYAHHS, TUM CAMUM MIJBUINYIOUYH €(DEKTUBHICTH 1 MPAKTUYHE 3aCTOCYBaHHS B
pI3HUX CILEHapisiX pealbHOro CBITY. BaXIuBICTh alrOpuTMIB CaMOHaBYaHHS
0cOONMBO TIAKpecieHa B o00JacTl aHamidy MEAMYHUX 300paxkeHb. Y MLiH
creniaiaizoBaHiii 001acTi BUMOTH O AaHOTYBaHHA JaHHUX € HE JIMLIE TPYIOMICTKHMH,
aje i moTpeOyITh BUCOKOI TOYHOCTI Uepe3 KPUTHUHY MPUPOIY BUKOPUCTOBYBAHUX

nanux. CKJIQAHICTh OTPUMAaHHSA TOYHUX AHOTAIlN MOCWIIOETHCS uepe3 aedinut

jiashuxu

3

CHELIANICTIB, 3JaTHUX IX 3a0e3MeunTd, W0 B CBOK YepPry MIJKPECIIOe
TpaHcHOopMyIOUHil TOTEHITIA MiIX0/11B CAaMOHABYAHHS B 1IiH cdepi.

VY mi aucepTallii mMpeacTaBI€HO HOBITHIO METOJOJIOTII0 CaMOHABYaHHS, IO
BuKopucToBye Mixup Feature sik MeTy pexoHCTpykii y Mexax pretext task. Ile
pretext task 3acHoBaHe Ha YKIaJeHHI BI3yallbHHUX TIPEACTaBICHb 4Yepe3
nporunosyBanHs Mixup Feature 13 mMackoBaHOTO 300pak€HHs, BUKOPUCTOBYIOUH IIi
KapTh OCOOJMBOCTEM ISl BWJIYYEHHSI BHCOKOPIBHEBOI CEMAHTHUYHOI 1HQOpMaIlii.
HucepTaltisi netanbHO po3risiaae poib Mixup Feature ik mporHOCTUYHOI LM y
CTPYKTypax caMoHaBuaHHs. lle mMochimKeHHs BKIIOYAIO ACTalbHY KaliOpOBKY
rinepnapaMmerpa A, 1o € BaxiauBOK0 s (ynkuionyBanHs Mixup Feature. 1li
HaJalllTyBaHHsS JI03BOJWJIM CTBOPUTH KOMOIHOBAaHI KapTH OCOOJMBOCTEH, IO
OXOIUTIOIOTh KapTH JeTeKlli KpaiB Sobel, ricrorpamu Opi€HTOBAaHUX TPaJIIEHTIB
(HOG) Ta kaptu nokanpHux OiHapHux wmabnoniB (LBP), 3a0e3neuyroumn
OaratorpaHHe MPeJICTABICHHS BI3yallbHUX JaHUX. J[JI1 OpakTUYHOIrO 3aCTOCYBaHHS
IbOTO HOBOI'O METOAYy $SK TO0JIOBHOI apxiTektypu OyB oOpanuii VIT (visual
transformer), ockiIbkH BiH €()€KTUBHO 00pOOJIsie CKIIAaNHI Bi3yalibHI BXI1JIHI JaH1 Ta
(doKyCcyeTbCsl Ha BaXJIMBUX perioHax 3o0paxkeHHs. Lleit BuOip Oyno A0IaTKOBO
MOCUJICHUN BUCHOBKaMHu, oTpumaHumu 3 migxoay Masked AutoEncoder (MAE),
KWW BUSBUB MOTEHIlA]l BUKOPUCTAHHS YaCTKOBO BUIMMHUX BXIJIHMX JaHUX IS
PEKOHCTPYKIli MOBHUX 300pa’KeHb, TAKMM UYHWHOM MOKPAIllylOUYHd MPOTHOCTUYHI
3110HOCT1 MOJIeNIl B KOHTEKCTI CaMOHABYAHHS.

Po3po6rieno mopens denoising self-distillation Masked Autoencoder st

camoHaBuaHHs. [l Monens moenHye enemeHTH 3 Mmepex Siamese Networks Ta

4

Masked Autoencoders, BTUIIOIOYM TpPbOXYACTHHHY apXITEKTypy, IO BKJIKOYAE
student network y ¢opmi mackoBaHOTO aBTOKO/Iepa, MPOMIKHHUI regressor Ta teacher
network. OCHOBHMM TIpOKCi-3aBJaHHSAM IIi€l MOJEIl € BIJIHOBJICHHS BXITHHUX
300paxeHb, Kl Oyl IITY4YHO CHOTBOPEHI BUMAJAKOBUMH IUISIMAMH TayCCIBCHKOTO
mymy. Lle cTpaTteriude pilieHHs, MpU3HAYEHE JJIsI CTUMYIIOBAHHS MOJIET1 BUUTHUCS
CTIMKUM TIPEJCTABICHHIM OCOOJIMBOCTEH, BIIOKPEMIIIOIOYM YHCTI CHTHAIM BiJ
IIyMHUX BXIJHUX JaHUX. BUKOHYIOUYHM 1€, MOJEIb HABUYAETHCS PEKOHCTPYIOBATH
JerpajioBaHe 300paKeHHS, €(EKTUBHO BYUTHCS KOHIIEHTPYBATUCS HA CYTHOCTI
BI3yaJIbHOIO KOHTeHTy. /Jlia 3a0e3nedeHHss BCEOIYHOTO HABYAHHS MOJEINb
3aCTOCOBY€E MeXaH13M MoJBiitHOT PyHKIii BTpatu. OaHa (QyHKIlISI HajJalITOBaHA Ha
3MIIHEHHS [100albHOT0 KOHTEKCTYalbHOTO PO3YMIHHSI 300pa’KeHHS, 110 J03BOJISIE
MOJIEN1 OCSITHYTH 3aralibHy CTPYKTYpY Ta KOH(pirypaiito ciieHu. OgHo4acHo Apyra
(GyHKIliS HaIIJIEHa HA YJOCKOHAJICHHSI CIIPUUHSTTS CKJIAJHUX JIOKAJIbHUX JAeTanei,
rapaHTylOuH, 110 TOHKI Bi3yaJbHI HIOAHCU HE BTPAyaroThCs IIJl Yac AelryMizamii Ta
PEKOHCTPYKIIii. 3aBISAKMA LIbOMY 1HHOBALIMHUN MIIX1J, MOJENb IparHe JOCSITHYTH
JeNIKaTHOro OallaHCy MDK MaKpOCKONIYHUM CHPUMHSTTSAM Bi3yaJdbHUX CIEH Ta
JIETATBLHOI0 PEKOHCTPYKIIIEIO JIOKAII30BaHUX JeTajed, OalaHcy, SKUW Biairpae
BUPIMIAJIGHY POJIb JUIsl CKJIATHUX 3aBJaHb aHaNI3y 300pakeHb B paMKaxX CHCTEM
CaMOHAaBYaHHS.

Jns OLIHKM eKCIEePUMEHTAIbHOI MPOJAYKTUBHOCTI JIBOX 1HHOBAI[IMHUX
QITOPUTMIB CaMOHaBYaHHS OyJlO 3JIIHCHEHO BCEOIYHMI aHami3, 30Kpema
3aCTOCOBAHUM 10 TPhOX CTaHAapTHUX HabopiB ganux: Cifar-10, Cifar-100 1 STL-10.

Ile gocini>KeHHsT MaJIO Ha MET1 MOPIBHATH 111 AJITOPUTMU 3 CYYaCHUMU TEPEIOBUMU

5

TEXHIKAMH CaMOHABYaHHsS, OCHOBAaHMMHM Ha MOJIETIOBAaHHI 3 MACKOBAaHUMU
300paxeHHsaMU. [IOpiIBHSHO 3 IHIIMMHU CYy4YaCHUMHM METOJaMH CaMOHAaBYaHHS, 110
0a3yloThCsi Ha MOJICTIIOBAHHI 3 MAaCKOBAaHMMHU 300paKEHHSAMH, 3MilllaHi
kaprorpadiuni xapakrepuctuku HOG-Sobel, orpumani 3a pomomororo Mixup,
nokazanu BuaaTHi pesynapratu Ha Cifar-10 ta STL-10 micna full fine-tuning, 3
cepeAaHiM miaBUIEHHSIM mpoaykTuBHocTi Ha 0,4%. Kpim Toro, mepenHaByeHa
Mozenb denoising self-distillation Masked Autoencoder (DMAE) Oyna mignana
perenbHi ouiHmi. Ilicnsa full fine-tuning, na nabGopi manux STL-10 us monens
MPOJIEMOHCTPYBaJia HEBEIIMKY, aje BaroMy ImepeBary Haja Tpanuiiiinum Masked
Autoencoders (MAE), nepeBepmyroun ioro mnpoaykrtuBHicth Ha 0,1%. Lle
BIAKpUTTS Mijikpecitoe noteHian DMAE y nokpanieHHi To4HOCTI Mozeni. binbliie
TOrO, JOCHIJKEHHS BUSBUJIO, IO B MOPIBHSAHHI 3 TPAJULINHUMU CTpaTeTisiMU
CaMOHAaBYaHHS, K1 [PYHTYIOThCSI Ha KOHTPAaCTHOMY HaBuaHH1, Metoa Mixup Feature
BUSBUBCS e(eKTUBHINIUM. BiH HajgaB mnepeBary y BUIUISIAI CKOPOYEHHS Yacy
HAaBYAHHS Ta YCYHEHHS HEOOXIHOCTI TPAAUIIMHUX METOMAIB PO3IIMPECHHS JaHUX,
TUM CaMUM ONTUMI3yIOUM TIPOILlEC HaBYaHHA. B 3akilo4yeHHl, JABa ajlropuTMu
CaMOHABYaHHS, BBEJCHI B LIbOMY JOCHIIPKEHHI, CHPHUAIOTh PO3LUIMPEHHIO HAOOpy
METOJiB JJIs MOJENIOBAHHS 300pa)KeHb i3 3aCTOCYBAHHSAM MAacoK. IX JoBeneHa
e(DEeKTUBHICTh Ha KOHTPOJBHUX HaOOpax MaHUX BHCBITIIIOE iXHIM MOTEHIAN JJIs
OUIBII IIMPOKOTO BUKOPHUCTAHHS, 30KpeMa B OUIBIIMX Ta CKIAIHIMIUX Habopax
JaHUX.

EdexTuBHEe po3mIMpeHHs 3aCTOCYBaHHS LHMX AQJITOPUTMIB CaMOHABUYAaHHS

OXOMUJIO 00JIACTh aHalli3y MEAMYHHX 300pakeHb. Take PpO3IMIMPEHHS BKIIOYAIO

6

3aCTOCYBaHHS CAMOHAaBYaHHS 3 MONEPEAHIM HaBYAHHSAM Ha CHELIAbHO MiIi0paHux
Habopax MeanyHux 300paxkeHsn. [licas ¢as3u momepenHHLOTO HaBYAaHHS, PO3pOOICHA
TaKUM YWHOM MOJIeNb OyJia 3aCTOCOBaHA [Jii BUKOHAHHS HACTYIHHUX 3aBJaHb.
EMmipuuni pe3yapTaTd IOTO JOCHIDKEHHS JE€MOHCTPYIOTh, III0 METOJ
CaMOHABYaHHS 3 TOMEpPEJHIM HABUAHHSIM TMEPEBUILYE €(EKTUBHICTh MPSIMUX
METOJIB HaBYaHHS. byJno cmnocTepekeHO BiAYyTHE MIJIBUINEHHS TOYHOCTI,
nepepuinyue 5%, micas Full fine-tuning Mozeni Ha aBox Habopax HaHWX st
HACTYITHUX 3aBJaHb.

Hesz0anancoBaHicTh JaHMX € BaroMMM BHUKIHMKOM Yy aHami3l MEIUYHUX
300paxeHb, aJ[)K€ HEJIOCTATHE MPEJICTABICHHSI OKPEMHUX CTaHIB a00 XapaKTEpUCTHUK
MOX€ HEraTUBHO BIUIMBAaTH Ha €()EKTUBHICTh TPEHYBAaHHS MOJENIeH Ta eKCTpakiiii
O3HaK. 3 OTJIAy Ha Iie, Y JOCHIKeHH1 OyB po3poOsieHu He3z0araHCOBaHMI HaOip
JaHMX, a TaKoX IIPOBEJACHO aHam3 CTIMKOCTI CaMOHAaBYaJbHHUX IOMEPEIHBO
TPEHOBAHUX MOJIeNied Yy KOHTEKCTI He30aJaHCOBAHOCTI JaHUX. ExcrepuMeHTanbH1
pe3yNbTaTh BUAUISIOTH MEpeBary CTIMKOCTI METOJIIB CaMOHABUYaHHS 3 MONEpEeIHIM
TPEHYBaHHSIM HaJl MOJEISIMH, HABYEHUMH 3 HYJs, Yy TMOJO0JIaHHI mpoOiIeM
He30anaHcoBaHOCTI AaHuMX. LI pe3ynbTaTv 3acBiIUYIOTh €()EKTUBHICTh HAIUX
3alpONOHOBAHUX CaMOHABUYAJIbHUX MOIMEPEIHbO TPEHOBAHUX MOJICNIeH Y pO3B'si3aHH1
npobsieM He30aJaHCOBAHOCTI HAOOpIB JaHUX. BiguyTHE MOKpAIIEHHS CTIMKOCTI
aJTOPUTMIB CAMOHABYAHHS PO3LIUPIOE X MOMKIIUBOCTI SIK €PEKTUBHUX IHCTPYMEHTIB
y aHani3i MeIUYHUX 300pa)keHb, HATSAKAIOYM Ha MEPCHEKTUBHE 30UIbIICHHS

TOYHOCTI B CUCTEMAX 1HTENEKTYaJIbHOI MIATPUMKHU J1arHOCTUKHU.

7

Knwuoei cnoea: Self-supervised learning, PexoncTpykiisi 300pa)xeHHs,
BunoOytoxk ocobnuBocteii, BusiBieHHs kpato 300paxeHHs, MackoBaHui
aBToeHkojep, BiziiiHi Tpanchopmaropu, Mepexi CiamMchbkux, AHami3 MeIUYHUX

300paKeHb.

ABSTRACT

Xu Jiashu. Research and development of self-supervised visual feature learning
based on neural networks. - Qualified scientific work on the rights of the manuscript.

Dissertation for the degree of Doctor of Philosophy in the specialty 121 -
Software Engineering and 12 - Information Technologies. - National Technical
University of Ukraine "Igor Sikorsky Kyiv Polytechnic Institute", Kyiv, 2024.

This Dissertation focuses on in-depth exploration into the design and
development of self-supervised learning algorithms, which are a subset of
unsupervised learning techniques that operate without the need for labeled datasets.
These algorithms are particularly adept at pre-training models in an unsupervised
manner, with the resultant models demonstrating performance on par with their
supervised counterparts across a range of downstream applications. This method is
particularly advantageous as it aims to mitigate the over-dependence on extensive
data labeling that is typical within deep learning paradigms, thereby enhancing
efficiency and practical utility in diverse real-world scenarios. The pertinence of self-
supervised learning algorithms is especially highlighted within the realm of medical
image analysis. In this specialized field, the requisites for data annotation are not only
laborious but also require a high degree of precision due to the critical nature of the
data involved. The difficulty of obtaining accurate annotations is compounded by the
scarcity of specialists capable of providing them, which in turn underscores the
transformative potential of self-supervised learning approaches within this domain.

In this dissertation, a cutting-edge self-supervised learning methodology is

delineated, which employs the Mixup Feature as the reconstruction target within the

9

pretext task. This pretext task is fundamentally designed to encapsulate visual
representations by the prediction of Mixup features from masked image, utilizing
these feature maps to extracting high-level semantic information. The dissertation
delves into the validation of the Mixup Feature's role as a predictive target in self-
supervised learning frameworks. This investigation involved the meticulous
calibration of the hyperparameter A, integral to the Mixup Feature operation. Such
adjustments allowed for the generation of amalgamated feature maps that encompass
Sobel edge detection maps, Histogram of Oriented Gradients (HOG) maps, and Local
Binary Pattern (LBP) maps, providing a rich, multifaceted representation of visual
data. For the empirical application of this novel method, the visual transformer was
selected as the principal architecture, due to its proficiency in handling complex
visual inputs and its emphasis on critical image regions. This choice was further
reinforced by the insights derived from the Masked AutoEncoder (MAE) approach,
which illuminated the potential of utilizing partially visible inputs to reconstruct full
images, thus enhancing the model's predictive capabilities in a self-supervised context.

A denoising self-distillation Masked Autoencoder model for self-supervised
learning was developed. This model synthesizes elements from Siamese Networks
and Masked Autoencoders, incorporating a tripartite architecture that includes a
student network in the form of a masked autoencoder, an intermediary regressor, and
a teacher network. The underlying proxy task for this model is the restoration of input
images that have been artificially corrupted with random Gaussian noise patches.
This is a strategic choice designed to encourage the model to learn robust feature

representations by distilling clean signals from noisy inputs. In doing so, the model is

10

trained to reconstruction of the degraded image, effectively teaching it focus on the
essence of the visual content. To ensure comprehensive learning, the model harnesses
a dual loss function mechanism. One function is calibrated to reinforce the global
contextual understanding of the image, thereby enabling the model to grasp the
overall structure and scene configuration. Concurrently, the second function is
tailored to refine the perception of intricate local details, ensuring that fine visual
nuances are not lost in the process of denoising and reconstruction. Through this
innovative approach, the model aspires to achieve a delicate balance between the
macroscopic comprehension of visual scenes and the meticulous reconstruction of
localized details, a balance that is pivotal for sophisticated image analysis tasks in
self-supervised learning frameworks.

An exhaustive analysis was executed to assess the experimental performance of
two innovative self-supervised learning algorithms, specifically applied to three
benchmark datasets: Cifar-10, Cifar-100, and STL-10. This study aimed to
benchmark these algorithms against existing advanced self-supervised techniques
grounded in Masked Image Modeling. In comparison to other state-of-the-art self-
supervised methods based on Masked Image Modeling, the mixed HOG-Sobel
feature maps obtained using Mixup showed outstanding performance on Cifar-10 and
STL-10 after full fine-tuning, with an average performance improvement of 0.4%.
Additionally, the pre-trained model of the Deep Masked Autoencoder (DMAE) was
subjected to a rigorous evaluation. When full fine-tuned on the STL-10 dataset, this
model demonstrated a modest yet significant edge over the conventional Masked

Autoencoder (MAE), exceeding its performance by a margin of 0.1%. This finding

11

shed light on the potential of DMAE in enhancing model accuracy. Moreover, the
study revealed that in comparison to traditional self-supervised learning strategies
reliant on contrastive learning, the Mixup Feature method emerged as more efficient.
It offered the advantage of shortened training durations and negated the requirement
for conventional data augmentation methods, thus streamlining the learning process.
In conclusion, the two self-supervised learning algorithms introduced in this research
contribute to the expanding repertoire of methods for masked image modeling. Their
demonstrated effectiveness on benchmark datasets illuminates their potential for
broader applications, particularly in larger and more complex datasets.

The application of these self-supervised learning algorithms was effectively
expanded to encompass the domain of medical image analysis. This extension
involved the utilization of self-supervised pre-training on specifically curated medical
image datasets. Following this pre-training phase, the model thus developed was then
employed for the downstream tasks. Empirical results from this study illustrate that
the approach of self-supervised pre-training surpasses the efficacy of direct training
methodologies. A notable enhancement in accuracy, exceeding 5%, was observed
upon the Full fine-tuning of the model on the two downstream datasets.

Data imbalance poses a substantial challenge in medical image analysis, as
inadequate representation of specific conditions or features can negatively impact the
efficacy of model training and feature extraction. Considering this, the study
developed an imbalanced dataset and delved into the robustness of self-supervised
pre-trained models in the context of data imbalance. The experimental findings

underscore the superior robustness of self-supervised pre-training methods over from

12

scrath trained models in addressing data imbalance issues. Particularly notable 1s their
performance in scenarios with a positive to negative sample ratio of 1:8, where they
exhibit enhanced robustness compared to traditional supervised Convolutional Neural
Network (CNN) pre-trained models. These results affirm the effectiveness of our
proposed self-supervised pre-trained models in tackling dataset imbalance challenges.
The notable improvement in the robustness of self-supervised learning algorithms
augments their potential as powerful tools in medical image analysis, suggesting a

prospective enhancement in accuracy within intelligent assisted diagnostic systems.

Keywords: Self-supervised learning, Image reconstruction, Feature extraction,
Image edge detection, Masked Autoencoder, Vision Transformers, Siamese Networks,

Medical image analysis.

13

LIST OF PUBLICATIONS BY THE AUTHOR

Scientific publications in which the main research findings of the dissertation

are published:

1. Jiashu Xu and Sergii Stirenko, (2023) "Mixup Feature: A Pretext Task Self-
Supervised Learning Method for Enhanced Visual Feature Learning," in
IEEE Access, vol. 11, pp. 82400-82409, IEEE, ISSN: 2169-3536, DOI:
10.1109/ACCESS.2023.3301561 (Scopus Q1, WoS Q2).

2. Jiashu Xu, Sergii Stirenko, (2023) "Denoising Self-Distillation Masked
Autoencoder for Self-Supervised Learning", International Journal of Image,
Graphics and Signal Processing (IJIGSP), Vol.15, No.5, pp. 29-38. MECS
Press, ISSN:2074-9074, DOI:10.5815/1jigsp.2023.05.03 (Scopus)

3. Jiashu Xu, Sergii Stirenko, (2022) "Self-Supervised Model Based on
Masked Autoencoders Advance CT Scans Classification", International
Journal of Image, Graphics and Signal Processing (IJIGSP), Vol.14, No.5, pp.
1-9. MECS Press, ISSN:2074-9074, DOI:10.5815/1jigsp.2022.05.01 (Scopus)

4. Jiashu Xu. (2021) "A review of self-supervised learning methods in the field
of medical image analysis." International Journal of Image, Graphics and
Signal Processing (IJIGSP) 13, no. 4: 33-46. MECS Press, ISSN:2074-9074,
10.5815/1jigsp.2021.04.03 (Scopus).

5. Yahu Yang, Hu Zhang, Jiashu Xu, Shenmin Song, (2023), “MATEKG: A

Large-scale Multi-class Equipment Knowledge Graph for Military Auxiliary

14

Tasks.” 2023 IEEE 6th International Conference on Information Systems and
Computer Aided Education (ICISCAE), Dalian, China. (Scopus).

. Yang, Ya-Hu, Jiashu Xu, Yuri Gordienko, and Sergii Stirenko. (2021).
"Abnormal Interference Recognition Based on Rolling Prediction Average
Algorithm." Advances in Computer Science for Engineering and Education
III. ICCSEEA 2020. Advances in Intelligent Systems and Computing, vol
1247. Springer, Cham. https://doi.org/10.1007/978-3-030-55506-1 28
(Scopus)

. Jiashu Xu, Sergii Stirenko, (2020), "FACIAL EXPRESSION
RECOGNITION SYSTEM BASED ON GAN NETWORK DATA
AUGMENTATION", The International Conference on Security, Fault

Tolerance, Intelligence 2020, pp. 144-149.

15
CONTENTS

LIST OF ABBREVIATIONS ..ot 18

INTRODUCGTION ..ottt e e 19

FEATURES ...ttt sttt sttt e e 26
1.1 Contrastive Learning Familycccoocoiiiiiiiiiiiniiiiie e 28
1.2 Masked Image Modeling Family.........c.cccoooiiiiiiiiiiniieeee e, 32
1.3 Self-Distillation Familyc.cccoooiiiiiiiiiiiiiie e 36
1.4 Canonical Correlation Analysis Familycccoocoveeiiniiieiniiiiiiieee e, 40
1.5 VIT ATCRITECTUTE.eeiieiiiiiieiiie ettt et 42
1.6 Conclusion of Chapter 1........coooiiiiiiiiiiieee e e 44

CHAPTER 2. ADVANCEMENT IN SELF-SUPERVISED VISUAL FEATURE

LEARNING TECHNIQUES THROUGH THE IMPLEMENTATION OF

MASKED IMAGE MODELINGcccoeiitiiiiiitenie et 46
2.1 MIXUP FRATUIES ...t e e e 46
2.1.1 MaSKiNg Strat@@yccccuveeeriiiieeiiieeeriieeeerieee et e e etae e e eereeeeeeeaeeeenees 48
2.1.2 Reconstruction of the Designated Target Mixup Feature............................ 48
2.1.3 The encoder in the Mixup Feature method..............cccooeeiiiiiiiiiiin, 51
2.1.4 The Decoder in the Mixup Feature Methodc.coeoiiiiiiiiiiiinie, 53
2.1.5 Mixup Feature Self-Supervised Pre-Training Processccccccvveeernrennnnee. 54
2.2 Denoising Self-Distillation Masked Autoencoder...........ccceevveeinieeniieenniennne. 55

2.2.1 Random Mask GauSS1an NOISE.....uuueeeueeieeeeeiee e e eeeeeeeeeaeeeeeeseeneeeeeeeeenns 56

2.2.2 The Encoder of the Denoising Self-Distillation MAEccccceeieeeeee 57
2.2.3 The Decoder of the Denoising Self-Distillation MAEccccoeeieeee 58
2.2.4 The Regressor of the Denoising Self-Distillation MAE.............ccocoeeniene. 58
2.2.5 Pixel-level Restorationccocueeiiiiiiiiiiiiiiniieeieeeeeeee e 59
2.2.6 Feature-level REGIesSSIOncoccuuiieeiiiiiieiiiie et 59
2.2.7 DiStillation STrat@@Yeeeeeveeeeriiiieeeiiiieeerieeeeeieeeeeireeeeaeeeeeereeeeseaeeeenens 60
2.3 Conclusion of Chapter 2.........ooeiieiiiiiiiieeieieee e e e 62

CHAPTER 3. EXPERIMENTS AND RESULTS ON MIXUP FEATURE AND

DENOISING SELF-DISTILLATION MASKED AUTOENCODER

ALGORITHMS ...ttt ettt e sae e e tae e s e e e saeesnsaeennseeenns 64
3.1 Self-Supervised Pre-Training Datasetcccoecveeeiiiieeeniiieeeiee e 65
3.2 Evaluation for SSL Modelscccuiiiiiiiiiiiiee e 68
3.3 Experimental Analysis of the Mixup Feature Methodcccceeeviirnnnnen. 72
3.3.1 Implementation Detailsccccueeiiieiiiiiiiiiceec e 73
3.3.2 Mixup Feature SCheme..........cccovviiiiiiiiiiec e 76
3.3.3 Masking Ratiocccoeouiiiiiiiiieeeiie et et e e 79
3.3.4 MIxXUpP FaACIOT A ...oviiiiiieiceeee et e 81
3.3.5 Comparisons with Previous Resultsccccovvviiiiiiiiiiiiiiiiiiee e, 84
3.3.6 Data AUZMENTALION.......cciiiiiieeiiiieeeiiieeeeieeeeeireeeeieeeesireeeesereeeseneeeesnnneas 85
3.4 Experimental Analysis of the Denoising Self-Distillation MAE 86
3.4.1 Implementation Details of the Denoising Self-Distillation MAE 86
R I 30 BATF | LT 15 () 1 BRSSP 89

3.4.3 ADIation StUAYccoovoiiiiiiiiiie e 91

3.5 Conclusion of Chapter 3.......ccooiiiiiiieeeee e 94

CHAPTER 4. APPLICATION OF SELF-SUPERVISED PRETRAINED

MODELS IN CT SCAN CLASSIFICATION ..ottt 97
4.1 CT Scan Datasets........coocuieiiiiiiiiiiiieeeiieceeeee ettt 98
4.2 Self-Supervised Pre-Training on CT Scan Datasetcccoccvveeevciieeenineennee. 98
4.3 Fine-Tuning on CT Scan Datasetcccceeeuiiireiiieeiniiieeeriiee e 103

4.4 Investigating the Robustness of Self-Supervised Pre-Trained Models on

Imbalanced Datasets...........cocuiiiiiiiieeiiiiee et 107
4.5 Conclusion of Chapter 4.........oooooiiiiiiii et 113
CONCLUSIONS ..ottt ettt e e s e e e e et e e esb e e essaeesnseeesseeenns 116
REFERENCES ...ttt ettt e s bee e snveesnnaeens 119
APPENDIX Aottt ettt e st e e aa e e sae e e e e ebaeesnbaeennaens 133

APPENDIX Bo...oiiiiiii et e 167

LIST OF ABBREVIATIONS

SSL — Self-Supervised Learning

MIM — Masked Image Modeling

CV — Computer Vision

NLP — Natural Language Processing

ViT — Vision Transformer

NT-Xent — Normalized Temperature-Scaled Cross-Entropy
MAE — Mask Auto-Encoders

DMAE — Denoising Mask Auto-Encoders
EMA - Exponential Moving Average

CT - Computerized Tomography

AUC — Area Under the Curve

CNN - Convolutional Neural Networks

RLHF - Reinforcement learning from human feedback

18

19

INTRODUCTION

Relevance of the Topic.

In recent years, self-supervised learning (SSL) has made remarkable strides in
the field of deep learning, even being referred to as "the dark matter of intelligence"
[1]. Traditional unsupervised learning methods face challenges in extracting high-
quality feature representations. To address the challenge of learning universal feature
representations from a large amount of unlabeled data, the approach of self-
supervised learning emerged. These methods use the inherent features of data to
design proxy tasks that generate pseudo-labels, enabling models to learn generic
visual representations for further transfer learning and reinforcement learning based

on human feedback (RLHF) [93]. The fundamental concept of SSL is shown in

Figure 1.
Fine-tune
Labeled Data

4 Downstream Task 1
Unlabeled Data = 3
Cheap " "

. -~ Downstream Task 2
Hiernon Pretrained | ~ . :)

= Model

‘[Downstream Task n }

Figure 1 — The fundamental concept of SSL.
In the field of natural language processing (NLP), SSL methods have been

employed to train large-scale models on vast, unlabeled text corpora from the internet,

20

leading to the emergence of notable language models such as ChatGPT [2], PaLM [3],
and Claude. A common proxy task in NLP involves masking words in the text and
predicting the masked words, enabling the models to capture relationships between
words without relying on explicit labels. In computer vision, large-scale CV models
like SEER [4] and SAM [5] can learn from unlabeled images available on the internet
and achieve state-of-the-art performance on a range of computer vision benchmarks.
These advancements owe to the success of self-supervised learning methods. By
utilizing abundant unlabeled data for training, SSL facilitates the learning of general
representations that can be applied to various tasks and even enables cross-domain
transfer learning. Notably, SSL is particularly valuable in domains such as medicine,
where labeling costs are prohibitively high.

Although SSL has made tremendous progress, the development of universal
large-scale models in the computer vision (CV) field is still in its early stages, and
self-supervised learning for image understanding remains challenging. The focus of
this research is to develop novel self-supervised learning methods that complement
existing algorithms in the visual domain, aiming to drive advancements in self-
supervised learning for visual feature extraction.

The connection of the work with scientific programs, plans, and topics.

The topic of the dissertation is included in the scientific work plan approved by
the Department of Computer Science at Igor Sikorsky Kyiv Polytechnic Institute,
taking into account the decree of the Cabinet of Ministers of Ukraine dated December
2, 2020, No. 1556-p on the approval of the Concept of Artificial Intelligence

Development in Ukraine. The methods proposed in the dissertation were used in the

21

scientific research work of the National University of Defense of Ukraine "Science
for Human and Society Security" - the project "Artificial Intelligence Platform for
Remote Automated Detection and Diagnosis of Human Diseases" project registration
number: 2020.01/0490.

The purpose and objectives of the research.

The aim of this research is to develop a self-supervised learning framework for
extracting generic visual features without requiring labeled data. By leveraging
pretraining models through self-supervised learning, these models can be applied to
downstream tasks such as medical image analysis and diagnostics, thereby enhancing
their accuracy.

To achieve this goal, the following tasks need to be addressed:

e Designing self-supervised learning algorithms is the most critical challenge. It
enables learning without labels, including self-supervised learning of local
features and global structures in images. Ensure that the designed self-
supervised models can learn generalizable visual features.

e Design appropriate model architectures that can effectively learn from
unlabeled data. Utilize ViT architectures [6] and autoencoder models.

e Define effective self-supervised tasks and loss functions to drive model
learning.

e Apply transfer learning and fine-tune the pre-trained models by transferring

them to downstream medical image analysis and diagnosis tasks.

22

e Perform performance evaluation and visualization analysis to analyze the
learned features for their generalizability and efficacy through visualization
and quantitative metrics. Evaluate model performance on downstream tasks.

e Investigate interpretability through ablation studies to analyze important
factors affecting the results, including self-supervised tasks, loss functions,
model architectures, etc.

Research object

The research objective of this dissertation is to develop innovative self-
supervised learning methodologies that empower the resulting models to acquire
visual features with robust generalizability, particularly suited for downstream tasks
in the context of medical image classification.

Research topic

The research topic focuses on the development of self-supervised visual feature
learning algorithms based on deep neural networks.
Research Methodology.

This research will focus on developing a novel self-supervised learning
algorithm for wvisual feature learning, in order to advance self-supervised
representation learning in the field of computer vision. The key methodology of this
research will involve designing self-supervised learning algorithms for unlabeled
image data, constructing appropriate model architectures, defining effective loss
functions, applying transfer learning, evaluating learned representations, conducting
ablation studies, and comparing the developed method with state-of-the-art self-

supervised learning algorithms through comprehensive evaluations. The core

23

emphasis will be on the development and evaluation of a self-supervised learning

framework.

Scientific Novelty of the Obtained Results:

e A novel self-supervised learning methodology leveraging the Mixup Feature
function 1is introduced. This method involves the pre-training of visual
representations by predicting Mixup features from masked images, which stand in
as proxies for advanced semantic information. The approach is poised to

potentially bolster the aggregate efficacy of the model.

e A masked autoencoder model for self-supervised learning is proposed, featuring
novel mechanisms for noise suppression and self-distillation. The architecture
utilizes a masked autoencoder in conjunction with a teacher network to facilitate
the reconstruction of corrupted image segments afflicted with random Gaussian
noise. This model extends the utility of self-supervised techniques in restoring

visual data.

e For the first time, a model is proposed that, by combining losses at the pixel level
and feature level, enables the extraction of deep semantic characteristics of the
image. This complements existing techniques for modeling masked images and
also increases the robustness of self-supervised learning models when working
with unbalanced data sets.

The Practical Significance of the Obtained Results.
The present study proposes innovative approaches and novel models in the field

of computer vision. The proposed self-supervised learning method has practical

24

applications in downstream tasks, such as medical image processing, and has
achieved results comparable to those of supervised learning experiments, indicating
its potential for practical use. This method can supplement existing self-supervised
learning methods for masked image modeling and may be applied to larger datasets.
Overall, the results of this study demonstrate the potential of self-supervised learning
in the field of medical image classification and provide new methods and models that
offer important insights and guidance for future research in computer vision.

Contributions of the author.

This dissertation is a product of independent scientific research, integrating two
self-supervised learning methods proposed by the author and applying the self-
supervised pre-trained models to medical 1mage processing. The scientific
methodologies and key findings presented in the dissertation were independently
derived by the applicant throughout their research endeavors. In the works where the
applicant is a co-author, the publications include:

[1] Development of a feature learning self-supervised approach, "Mixup Feature: A
Pretext Task Self-Supervised Learning Method for Enhanced Visual Feature
Learning".

[2] Development of a denoising self-supervised method, "Denoising Self-Distillation
Masked Autoencoder for Self-Supervised Learning".

[3] Development of a self-supervised model leveraging masked autoencoders for

enhanced CT scan classification.

25

[4] Conducted the first comprehensive survey of the application and research of self-
supervised learning algorithms in the medical imaging field, filling the gap in this
area.

[5] Development of an anomaly interference detection method utilizing rolling
prediction average algorithms.

Approbation of the results of the dissertation.

The primary outcomes of this research have been disseminated and deliberated
in international and IEEE journals, as well as at IEEE scientific conferences,
specifically in venues such as: the "[EEE Access" journal; the "International Journal
of Image, Graphics and Signal Processing (IJIGSP)"; the "IEEE 6th International
Conference on Information Systems and Computer Aided Education (ICISCAE)",
held in Dalian, 2023; the "3rd International Conference on Computer Science,
Engineering, and Education Applications (ICCSEEA)", held in Kyiv, 2020.

Publications.

Based on the findings of the study, 7 scientific papers have been published, and
they have been indexed in the following international citation databases: Scopus - 6,
Web of Science - 1, and EI Compendex - 2.

Structure and scope of work.

The paper consists of an introduction, four chapters, a conclusion, a list of 94
references, and appendices. The total number of pages in the paper is 168, with 101
pages for the main part and two appendices totaling 35 pages. It includes 30 figures,

16 equations, and 10 tables.

26

CHAPTER 1. SELF-SUPERVISED LEARNING ALGORITHMS FOR

VISUAL FEATURES

Since 2020, the emergence of ultra-large datasets, coupled with the availability
of high-performance, high-memory GPUs, has led to a resurgence of interest in Self-
Supervised Learning (SSL) methods. However, SSL is not a recent development but
can be traced back to the early stages of deep learning. Today's SSL methods are built
upon the knowledge derived from the experiments of early researchers.

In this section, the main concepts underpinning Self-Supervised Learning (SSL)
prior to 2020 are succinctly delineated. While many of these specific methods are no
longer mainstream due to their inability to deliver state-of-the-art performance on
benchmark problems, the ideas within these papers have nonetheless contributed
significantly to the formation of many modern methods. The fundamental principle of
SSL algorithms is to devise a proxy task that leverages the data itself to generate
pseudo-labels. Based on various proxy tasks, existing self-supervised learning
algorithms can be broadly classified into the following categories:

e Information restoration. Training neural networks to recover missing or

damaged image information. For example, one common strategy is to
convert an image to a grayscale and predict the original RGB values as a
proxy task [7, 8]. Another approach involves masking or removing a portion

of the image and then reconstructing the missing pixel values as a proxy task

[9].

27

Learning spatial context information. This category of proxy tasks
involves training models to comprehend the relative positions and
orientations of objects within images. For instance, the model is subjected to
random rotations of the original images and is then tasked to predict the
rotation angles [10]. Another approach is to partition the images into
disjointed blocks, randomize their arrangement, and employ a 'jigsaw'
method to predict the relative positions of each block [11], An example is
shown in Figure 1.1.

Clustering for images. Clustering semantically similar images together can
facilitate the acquisition of rich features. Drawing inspiration from the
classical machine learning algorithm, K-means clustering, we can implement
SSL through neural models. Deep clustering [12] involves performing k-
means in the feature space to assign Pseudo-label to the images.

Generative methods. Generation-based approaches capitalize primarily on
the feature learning capabilities of autoencoders, such as denoising
autoencoders [13], deep canonically correlated autoencoders [14], and Split-
brain autoencoders [15]. Generative adversarial networks (GANs) [16]
consist of an image generator and a discriminator. This model is trained in
an unsupervised manner and can learn feature representations useful for
transfer learning. Early GANs SSL [17] attempted to use GAN components
for downstream image classification.

Multi-view invariance. In recent years, many SSL methods create proxy

tasks using contrastive learning, encouraging the model to output similar

28

feature representations for simple image transformations. This maximizes

the mutual information between feature representations of the image under
different views [18].

Based on these classifications, I have grouped these SSL categories into four

major families: the contrastive learning family, the masked image modeling family,

the self-distillation family, and the canonical correlation analysis family. Each of

these families will be discussed in the following subsections.

shuffled patches target patches

Figure. 1.1 An example of the “jigsaw” pretext task on an CT image.

1.1 Contrastive Learning Family

Contrastive learning methods aim to learn a representation learning model by
automatically constructing pairs of similar and dissimilar instances, such that similar
instances are projected close to each other in the embedding space while dissimilar
instances are projected far apart. For instance, consider a set of four images, as
depicted in Figure 1.2. The first two images belong to the 'dog' category, while the
subsequent two images pertain to different categories. Taking the first image as an

exemplar, our objective is to maximize its similarity with the second image, which

29

also belongs to the 'dog' category, while minimizing its similarity with the third and

fourth images, which belong to distinct categories.

Minimize Similarity

Maximize Similarity

Figure. 1.2 Contrastive learning attempts to teach models to distinguish between
similar and dissimilar entities.

The contrastive loss was first introduced in 1993 [19] and was later formally
defined in 2006 [20]. Since the data is unlabeled, we often use data augmentation to
preserve the semantic information and form positive samples for a single instance,
while different samples are considered negative. The contrastive loss sets a margin
parameter m, requiring that the distance between negative samples should be greater
than m. Similar to the contrastive loss, triplet loss calculates the similarity between
samples by optimizing the distance between the anchor example and the positive
example to be less than the distance between the anchor example and the negative
example [21]. Compared to contrastive loss, triplet loss only requires that the final
optimization objective brings the anchor and positive closer while pushing the anchor
and negative examples further apart, i.e., the similarity difference between the

anchor-positive and anchor-negative pairs is greater than a margin m.

30

When selecting sample pairs, triplet loss can only consider a single negative
sample pair, which limits its ability to distinguish between samples from other classes.
This can result in instability and slow convergence. To address this issue, N-pair loss
selects multiple negative sample pairs by combining a positive sample pair with all
samples from different classes to form negative sample pairs [22]. For a dataset with
N classes, each positive sample pair corresponds to N-1 negative sample pairs. A
similar approach is taken in contrastive predictive coding (CPC) loss, which has led
to the emergence of contrastive learning in the field of self-supervised learning (SSL)
[23]. CPC has been extended to the image domain [24], with a key element being the
introduction of InfoNCE loss [25], which has become a core element of SSL.

SimCLR [27] is one of the seminal works in the field of self-supervised learning
(SSL), focusing on contrastive learning. SImCLR employs a specific approach by
maximizing the similarity between two augmented views of a sample to learn visual
representations. The augmented views are created using common data augmentation
techniques, such as random resizing, cropping, color jittering, and random blurring,
among others. Its framework is illustrated in Figure 1.3. Consider an arbitrary image
X, referred to as the Original Image. Firstly, data augmentation is applied to X,
resulting in two augmented images, x; and x;. Subsequently, the augmented images
x; and x; are fed into an Encoder, where the two Encoders share the same parameters,
producing respective representations h; and h;. Further, these representations h; and
h; are passed through a Projection Head, which also shares same parameters. The
Projection Head, often implemented as a Multi-Layer Perceptron (MLP) followed by

ReLU activations [28], maps the initial embeddings to another space. In this space, a

31

contrastive loss is applied to maximize the similarity between the representations z;
and z; obtained from the same image, aiming to encourage enhanced agreement
between z; and z;. After completing the pre-training phase, the Projection Head is
discarded, while retaining the feature extraction capability of the Encoder, which is

then utilized for fine-tuning on downstream tasks.

Sl

9()
Projection head - :
— Downstream
h; h; Tasks |
f () Encoder Encoder
ResNet-50

|
Transformed .
Images Xi m

Data
Augmentation

Figure. 1.3 The framework of SImCLR, the picture is sourced from [26].
SimCLR defines the similarity between representations using Cosine Similarity

and transforms it into a Loss Function that can be optimized. SimCLR employs a

32

contrastive learning loss function called NT-Xent loss [27], which utilizes Non-
parametric SoftMax [29] as a key ingredient. For SImCLR, the number of negative
samples determines the model's ultimate feature learning capability, thus relying on a
relatively large batch size. However, due to computational limitations, the batch size
cannot be set too large, making it difficult to incorporate a large number of negative
samples. To address this dilemma, a larger memory bank is employed to store the
representations of all samples [29]. However, the updating speed of the memory bank
is slower than that of the encoder, leading to inconsistency. MoCo [30] utilizes
momentum (moving average updating of model weights) and a queue (dictionary) to
effectively address the inconsistency problem and avoid the issue of insufficient
negative samples.

In further work, researchers attempted to perform contrastive learning using only
positive pairs, which is intuitively unrealistic since the model is likely to collapse all
representations to a single constant value by only minimizing the distance between
positive pairs without increasing the distance to negative samples. This would result
in zero loss but the loss of any information in the representation. To avoid
representation collapse, an asymmetric self-distillation structure was employed,
enabling effective contrastive learning with only positive pairs. Several methods for

self-distillation-based contrastive learning are described in the 1.3 subsection.

1.2 Masked Image Modeling Family

“What I cannot create, I do not understand.” — Richard Feynman

33

In the early days of the CV field, many self-supervised pre-training proxy tasks
applied degradation techniques to training images, such as decolorization [7] and
noise [13]. Additionally, context encoders were used for the restoration of occluded
images, where the majority of pixel values in an image were replaced with white,
training autoencoders to recover the original pixels overlaid with white. Context
encoders were early attempts at masked image modeling, based on convolutional
neural network (CNN) backbone networks, prior to the emergence of visual
transformer architectures. These methods, limited by network architecture constraints,
did not achieve competitive performance on downstream tasks. In the NLP field, the
BERT method [31] has achieved significant success in downstream tasks through the

use of Masked Language Modeling (MLM) for self-supervised pre-training.

Unused During Reconstructed
Vsl Tokang Pre-Training Image
gg"'.’“ _ 12?[234 456 567 - - : g”-“.‘
— > & 987 876 765 543 x | ol W
rigina .9 —— | Tokenizer | — A \ ——— Decoder | ---» = ¥
Image { /112 2231334 445 l I !
= X to | e,
S N V2 Ezes saa | ~< 5
l 234 b/’5 e g
b | 456 876 76 322
- r. Lo
S] 1 1
Image .48 Masked Image Modeling Head
Patches s [— T 5D
EENE (b s] (bt |t | k)
Blockwi
vl BEIT Encoder
b

=

+ +

e v ' | M Y~

e 18 a—

I
DA e EEEER o,

-

1) +
= ; Flatt:
B == =] %5 [ik

Embedding

Figure. 1.4 Overall framework of BEIT [32].
Inspired by BERT, a visual Transformer architecture called ViT [6] has emerged

in the CV field, where models are trained to directly predict missing pixel values, but

34

it was found that the effectiveness of this pre-training strategy is significantly lower
than that of supervised pre-training. Since there is no large vocabulary in visual tasks,
directly applying the BERT strategy to images is challenging. BEiT [32] regards
MIM as a regression problem, where the Encoder input is image patches, and the
output is visual tokens. The aim is to make the visual tokens output by the masked
positions as close as possible to the true visual tokens, which are obtained through
additional training of discrete variational autoencoder (dVAE). Compared with
previous supervised and self-supervised baselines, BEiT has achieved significant
improvements in downstream image classification and semantic segmentation
performance. However, its training pipeline is complex because it requires an
additional dVAE to convert image patches into visual tokens. The overall structure of
BEIT is illustrated in Figurel.4.

In subsequent work, both MAE [33] and SimMIM [34] have simplified the MIM
pre-training process. Unlike BEiT, which requires dVAE to extract additional visual
tokens, MAE directly reconstructs the masked image patches, using the error between
the predicted results and the actual image patches as a loss. Experiments on
downstream tasks such as image classification, semantic segmentation, and object
detection have shown that these pre-training strategies perform better than BEiT.
Direct reconstruction of the original image can also yield impressive results in self-
supervised learning.

The MAE method is akin to Denoising Auto-Encoders (DAE), in which the
input signal is disrupted, and the model learns to reconstruct the original, undisturbed

signal. The encoder and decoder structure in MAE differs and is asymmetrical. The

35

encoder encodes the input into a latent representation, and the decoder rebuilds the
original signal from this latent representation. MAE, like ViT, divides images into
regular, non-overlapping patches. Some patches are then randomly selected, and the
remaining patches are masked, following a uniform distribution. By utilizing a
sufficiently high mask ratio, the redundancy of the patch information is significantly
reduced, making the reconstruction of images in this context less straightforward.

The MAE self-supervised learning architecture is shown in Figure 1.5.

|

HPNE™
A | L

—~ HnNsa
encoder —> decoder| — —> BN
- HEEE=

target

|

_B Il Y

Figure. 1.5 MAE self-supervised learning architecture [33].

The masking strategy of SimMIM contrasts with that of MAE. Instead of
discarding the masked patches as MAE does, SimMIM, akin to BEiT and BERT,
replaces masked patches with a learnable mask token vector and trains them along
with the network. The basic unit of masking remains the image patches. For the ViT
model, the size of the masked patch is 32x32. The SimMIM and MAE methods share

a common approach of randomly masking image patches and directly regressing the

36

original pixel RGB values for prediction. Additionally, the decoder model is
lightweight. Inspired by MAE and SimMIM, MIM-based self-supervised learning
has achieved competitive performance in various visual downstream tasks [35,36]
and even in visual language representation learning [37].

Overall, MIM-based self-supervised learning methods have achieved
competitive experimental results. Some methods combine masked image modeling
with self-distillation, which will be discussed in the next subsection on the self-
distillation family. Our proposed Mixup Feature method [67], also inspired by MIM

modeling, will be detailed in Chapter 2.

1.3 Self-Distillation Family

Self-distillation methods, such as BYOL [38], SimSIAM [39], DINO [40], and
their variants, employ a simple mechanism to achieve self-supervised learning. This
mechanism involves providing two different sample views to two encoders and
mapping the output of one encoder to the output of another encoder through a
predictor. To prevent the encoders from failing by predicting a constant value for any
input, these methods adopt various techniques. One common approach is to update
the weights of one encoder by using the running average of the weights of the other
encoder, thereby preventing the encoders from collapsing.

BYOL is a self-supervised learning method that employs self-distillation to
avoid training collapses. It is an improvement over the MOCO method that eliminates

the use of negative samples. As shown in Figure 1.6, BYOL shares a similar front-

37

end network architecture with MOCO, except that BN layers are added to gy, and it
consists of two networks: the online network and the target network. The key
difference lies in that the online network first obtains Zg4 after the projection layer,
and then incorporates a predictor (composed of 1 or 2 fully connected layers) to map
to the feature Z Sé extracted by the target network, which is essentially a regression
task. The loss function is computed using mean squared error (MSE), taking into
account that both Z4 and Z é are L2 normalized. Each network receives different
views of the same image, obtained through random image transformations such as
resizing, cropping, color jittering, and brightness changes. The network structure
aims to maximize the similarity between the positive pairs of extracted features,
without using negative samples. During the entire training process, the online
network i1s updated using gradient descent, while the target network is updated
through the exponential moving average (EMA) of the online network's weights. The

asymmetry caused by the slow update of the exponential moving average is crucial

for BYOL's success.

view representation projection prediction

£ ——

: fo 9o 10
input
image t v > o > 20 qo(ze) . online
\
A\
Y 4
/
! / > o '0’(‘,) F ‘r oef,
1 v > < +)4 23 arge
% g

Figure. 1.6 BYOL architecture [38].

(

]

-

Y

L

38

SimSIAM [39] proposes a new contrastive learning method based on MoCo [30],
SimCLR [27], and BYOL [38], which addresses the issues of model collapse and
difficulty in constructing negative samples in contrastive learning with a simple
structure. SimSiam demonstrates that EMA is not necessarily required in practice,
even though it can lead to a slight improvement in performance. It also investigates
the reasons for the absence of model collapse and concludes that the operation of the
stop gradient plays a significant role in avoiding model collapse. The model
framework 1s straightforward as shown in the Figure 1.7, the two views of a sample x
are processed by an encoder network f, which consists of a backbone (e.g., ResNet
[41]) and a projection MLP head h. The encoder f shares weights between the two

views. The h maps the output of one view to the other.

similarity
pI‘ ediCtOI' h Stop_ grad
encoder f encoder f
1 i)
image T

Figure 1.7. SimSIAM architecture [39].
DINO shares similarities with BYOL in that it employs a teacher-student
network architecture, where both networks have identical model structures. The

teacher network's parameters are updated by computing the moving average of the

39

student network's weights. The outputs of both networks are normalized using a
SoftMax layer, and cross-entropy serves as the loss function for updating the model
parameters via backpropagation.

A novel approach called iBOT [42] has been developed by integrating masked
image modeling and self-distillation into the DINO framework. The model aims to
extract high-level semantic information from image patches using a visual tokenizer,
thereby avoiding the learning of redundant details. The iBOT tokenizer possesses two
key properties: 1) the ability to represent continuous image content completely, and 2)
high-level semantic information, similar to the tokenizer used in natural language
processing (NLP). The process of predicting the masked image sequence using the
Transformer is modeled as a process of knowledge distillation, where knowledge is
obtained from the tokenizer. The target network, such as ViT [6], inputs masked
images, while the online tokenizer receives the original images. The main objective is
to enable the target network to restore each masked patch token to its corresponding

token. The iBOT network framework is shown in Figure 1.8.

ﬁLCLS]

i}
u Lyvim
ﬁpatch
s
x~7 t~T
[CLS]
[} Uy o}
stop grad :":
vtpatchE u:mtchH
Z e(MASK] online tokenizer [:i R

Figure 1.8. overview of the iBOT framework, which utilizes an online tokenizer

to perform masked image modeling [42].

40

DINOvV2 [43] builds on the iIBOT framework by further refining the training
scheme and architecture, resulting in a significant improvement in its performance on
both linear and k-NN evaluations. Additionally, DINOv2 plans to utilize an even
larger pre-training dataset, consisting of 1.42 billion images. While there are
numerous works within the self-distillation family, this paper only provides a brief
overview of the classic methods. These self-distillation works serve as inspiration for
the development of the self-supervised learning algorithm proposed in this paper,

which will be thoroughly discussed in Chapter 2.

1.4 Canonical Correlation Analysis Family

Several classic self-supervised learning methods based on the canonical
correlation analysis (CCA) framework have been proposed, including VICReg [44],
Barlow Twins [45], SWAYV [46], and W-MSE [47]. CCA's fundamental principle
involves inferring the relationship between two vectors by analyzing the covariance
matrix of two variables. Specifically, these methods optimize the correlation between
the embeddings of two views using the concept of canonical correlation analysis
(CCA), which provides feature-level regularization.

VICReg transforms different views of the same image into embedding vectors
using an encoder and constructs a loss function by utilizing three regularization terms
to prevent constant or non-informative embedding vectors, thereby improving self-
supervised image representation learning. VICReg framework as shown in the

Figure.1.9 The first regularization term, Invariance, minimizes the Euclidean distance

41

between two embedding vectors of the same image. The second regularization term,
Variance, uses hinge loss to maintain the standard deviation of each dimension of the
embedding vectors (within a batch) above a given threshold, which forces the
embedding vectors of different samples in a batch to be different. The third
regularization term, Covariance, attracts the covariance (within a batch) of each pair
of embedding vector variables to approach zero, which reduces the correlation
between embedding vector variables and increases the information content of the
embedding vectors. The encoder and extender are trained by minimizing the loss
function constructed by the three regularization terms to obtain a model with high-
quality embedding vectors.
vy~

v : maintain variance
c : bring covariance to zero
(2 s : minimize distance
t~T X T : distribution of transformations
/ Lt : random transformations
s(Z,Z" X
@,2) fo.f'g

, : encoders
hg, ' g,: expanders

I : batch of images
" —_— —Y — — 7 (2" X, X’ :batches of views
t'~T XI Y.Y® :batches of representations
Z,72> :batches of embeddings

o)

]
3

Figure 1.9. overview of the VICReg framework [44].

The Barlow Twins method achieves self-supervised learning by reducing the
redundancy of embedding vectors of input samples under noise perturbations. The
objective function of this method measures the cross-correlation matrix of outputs
from two identical networks and minimizes the distance between the cross-
correlation matrix and the identity matrix, thereby minimizing the redundancy of
embedding vectors. Through this approach, the Barlow Twins algorithm can learn

feature representations that are both robust and interpretable.

42

The W-MSE method is a self-supervised learning method based on feature
whitening operation, which projects feature vectors onto a spherical distribution to
prevent all sample features from collapsing into a single point. Compared to
traditional contrastive loss methods, this method does not require contrasting positive
and negative samples, allowing for multiple positive pairs to be extracted from the
same image instance and avoiding the need for large numbers of negative samples.
Through feature whitening operation, the W-MSE method is able to scatter the
feature representations in a batch, thereby avoiding degenerate solutions. As a
potential alternative to contrastive loss methods, the W-MSE method offers a
conceptually simple and computationally efficient approach to self-supervised

representation learning.

1.5 ViT Architecture

The introduction of ViT [6] aims to extend the success of Transformer models in
natural language processing (NLP) to the field of computer vision.

The rise of ViT architectures in self-supervised learning can be attributed to the
following aspects:

Scalability: ViT models can process images of different sizes, enabling their
application to diverse self-supervised tasks like image classification, object detection,
semantic segmentation, etc. Their scalability also allows handling large-scale self-

supervised datasets for improved performance.

43

Adaptability: The Transformer design of ViT models can adaptively process
input data and leverage self-attention to capture relationships between inputs for
better feature representations. This adaptability results in remarkable performance on
self-supervised tasks.

Interpretability: ViT models adopt self-attention to extract features, offering
improved interpretability into the feature extraction process and further enhancing
model performance.

Compared to conventional convolutional neural networks (CNNs), the ViT
architecture has the following key differences:

Feature Extraction: CNNs extract image features through convolutional and
pooling layers, with the former effectively capturing local features and the latter
reducing feature map size and quantity for lower complexity. In contrast, ViT uses
Transformer encoders for feature extraction, where self-attention captures global
relationships for holistic input understanding.

Input Form: CNNs typically take fixed-size images as input, limiting model
ability on varying image sizes. ViT divides input images into fixed-size patches and
represents them as vectors, enabling handling of different image sizes.

Computational Efficiency: Large CNNs often require substantial compute and
parameters for large images, causing overfitting and low efficiency. ViT incorporates
optimizations like removing fully connected layers and lightweight Transformer

encoders to improve efficiency and generalization.

44

Interpretability: CNNs are often black-box models, providing little insight into
feature extraction. ViT's self-attention mechanism for feature extraction offers

improved interpretability into the model's inner workings.

1.6 Conclusion of Chapter 1

In the present chapter, a comprehensive review has been conducted on the
evolution of self-supervised learning algorithms utilized in visual feature learning.
Although select methodologies may no longer be considered competitive within the
contemporary landscape, such early self-supervised techniques have indelibly shaped
the foundation upon which current strategies are erected. These algorithms have been
broadly classified into four principal categories: contrastive learning, masked image
modeling, self-distillation, and canonical correlation analysis.

Contrastive learning approaches ambitiously strive to draw positive sample pairs
into closer proximity whilst simultaneously driving negative pairs apart within the
embedding space. Noteworthy instances encompass SImCLR, which optimizes the
conformity between augmented views, and MoCo, which preserves a negative sample
dictionary. Masked image modeling methods endeavor to restore corrupted images,
with MAE and BEiT applying BERT's masked language modeling paradigm to
images. Self-distillation methodologies such as BYOL and SimSiam distill
knowledge between networks to circumvent collapse. Lastly, CCA-based
methodologies like VICReg and Barlow Twins leverage correlations existing

between views for regularization purposes.

45

The transformer-based architecture known as the Vision Transformer (ViT) has
emerged as a significant player within the realm of self-supervised learning. ViT
offers scalability to accommodate fluctuating image sizes, adaptability through self-
attention to model relationships, and heightened interpretability when compared to
Convolutional Neural Networks (CNNs). ViT-based self-supervised methodologies,
including MAE and iBOT, have demonstrated robust performance by capitalizing on
advantages such as global modeling.

In conclusion, this chapter has provided an extensive review covering a wide
array of ideas, stretching from early techniques to recent ViT-based approaches that
have collectively propelled the development of self-supervised visual representation
learning. While numerous specific techniques may be deemed obsolete in the current
context, the core principles continue to exercise a profound influence over
contemporary algorithms. These recent methodologies ingeniously amalgamate these
fundamental principles to deliver cutting-edge self-supervised capabilities. The
forthcoming chapter will introduce our innovative approach which resourcefully

builds upon these trailblazing works.

46

CHAPTER 2. ADVANCEMENT IN SELF-SUPERVISED VISUAL FEATURE
LEARNING TECHNIQUES THROUGH THE IMPLEMENTATION OF

MASKED IMAGE MODELING

This chapter presents two novel self-supervised learning algorithms centered on
Masked Image Modeling, predicated on the results of the research conducted.

1. Mixup Feature Algorithm

This work proposes a novel pretext task tailored specifically for self-supervised
visual feature learning [67]. This algorithm integrates conventional visual feature
maps as the reconstruction targets for Masked Image Modeling. Notably, the feature
maps utilized include Sobel edge feature maps [50], Histogram of Oriented Gradients
(HOG) feature maps [48], and Local Binary Pattern (LBP) feature maps [49].

2. Denoising Self-Distillation Masked Autoencoder

The work introduces a unique approach that amalgamates the principle of self-
distillation with Masked Autoencoders. This synergistic model presents a robust
methodology for denoising in the domain of self-supervised visual feature learning.

In the subsequent sections, an articulate exposition of the algorithmic principles

inherent to each of the two methods will be provided in a respective manner.

2.1 Mixup Features

Inspired by the Masked Autoencoder (MAE) framework, a novel proxy task

methodology has been designed for predicting mixed feature maps, termed the Mixup

47

Feature algorithm. As depicted in Figure 2.1, the algorithm entails a series of specific
steps.

In the initial stages of the proposed methodology, the encoder of the Vision
Transformer (ViT) backbone network is deployed to extract visual feature
representations. During the pre-training phase, the image patches that remain visible
post-masking are supplied as input to the encoder. The information supplied to the
decoder comprises the encoded details of these visible image patches, coupled with
mask tokens. The primary role of the decoder is to reconstruct the Mixup Feature
map. The Mixup Feature map, an amalgamation of Sobel edge feature maps, and
HOG feature maps, exhibits a novel, mixed structure that can provide more complex

and comprehensive visual data representations.

original image Mixup Feature

! 4 Image edge features —_
g€ c.g: Sobel, Hog,
Mixup Sobel and Hog
random masked input =
r Lmse
Encoder [Decoder
VIT - vIT
5 predict
visible patches

Encoded patches and mask tokens

Figure 2.1. Mixup Feature self-supervised learning architecture.

48

Following the pre-training phase, the encoder is repurposed for subsequent

downstream tasks, while the decoder is disregarded.

2.1.1 Masking Strategy

In adopting the principles of ViT architecture, images are dissected into non-
overlapping segments based on a predetermined patch size, yielding a collection of
patches denoted as X = {xy,x,,...x,}. Subsequently, the ensemble of patches X is
subjected to a process of random sampling, implementing a set masking ratio that
ensures certain patches are obscured.

The adopted random sampling strategy is simplistic yet effective, operating
under the conditions of uniform distribution and without replacement. A significant
level of redundancy is eradicated by executing a high masking ratio during the
random sampling process. The uniform distribution aids in countering potential
central biases, thus providing an even representation across the sampled patches.

In the following subsection, the objective of reconstructing the Mixup Feature

will be elaborated.

2.1.2 Reconstruction of the Designated Target Mixup Feature

For the purpose of self-supervised learning pretraining, the selection has been
made to employ three traditional image feature maps: Local Binary Patterns (LBP),
Histogram of Oriented Gradients (HOG), and Sobel edge features. The research

encompasses the examination of nine unique feature map pretraining schemes.

49

In the first instance, the study explores the possibility of using a single
traditional feature map as the solitary target signal for the proxy task. This approach
gives rise to three different methodologies.

Subsequently, the investigation delves into the strategy of pairing the selected
feature maps, with the aim of deriving the sum of feature maps. This method results
in an additional set of three schemes.

In the final approach, pairwise combinations are executed to obtain feature maps
after the Mixup process, leading to the last three schemes of the study. This
exhaustive investigation, encompassing a wide array of feature map pretraining
schemes, ensures a comprehensive understanding of the potential capabilities of each
approach.

The specific procedure entailed in the manipulation of Mixup features is
graphically depicted in equation (2.1). Herein, A serves as a hyperparameter,
encompassing a value range that extends from 0 to 1. The two variables f; and f,
denote the pair of feature maps that are subjected to the Mixup process.

Frixuped feature = Af1 + (1 =) f; (2.1)

The Local Binary Pattern (LBP) operates as a cardinal method for feature
extraction within the domains of computer vision and image processing. The
manifold applications of LBP span across distinct areas, encompassing image
classification, facial recognition [51], and texture analysis [52], demonstrating its
broad-ranging utility. Several key benefits distinguish the LBP descriptor. Notably, it
boasts computational simplicity, rotation invariance, and grayscale invariance, factors

that contribute to its widespread deployment in the field of computer vision and

50

image processing. With these capabilities, the LBP descriptor presents an efficient
tool for elucidating the texture features intrinsic to various regions of an image. The
LBP feature map, a visual representation of the LBP descriptor, is typically generated
through the extraction of LBP features from an image, followed by the mapping of
each pixel's LBP value to a grayscale equivalent. This process offers a granular view
of the texture characteristics inherent to different image regions. Furthermore, the
LBP feature map holds significant potential in the realm of image restoration,
particularly in the reconstruction of obscured image patches from a limited subset of
visible patches. Therefore, LBP can serve as a reconstruction target for pre-text tasks.

Edge detection is the process of identifying and locating sharp discontinuities in
an image. Serving as a pivotal aspect of computer vision, it assists in discerning
notable attributes of an image such as object boundaries and texture variations. The
Sobel edge detector [53] employs a pair of 3x3 masks to calculate the horizontal and
vertical gradients, represented as G, and G, respectively. These are then
amalgamated to deduce the absolute magnitude and the direction of the gradient at
each discrete point, as detailed in Equation (2.2). Utilizing the Sobel operator, the
resultant edge feature map serves as the target signal in the prediction of the proxy
task. By facilitating the prediction of the masked original image's edges, we equip the
model to glean valuable information, thereby diminishing the impact of noise. This

process culminates in enhancing the model's comprehension and processing

IG| = /G,§+Gy2 (2.2)

capability of images.

51

The Histogram of Oriented Gradients (HOG) method generates features through
the computation and aggregation of gradient orientation histograms within specified
local regions of an image. The modus operandi of HOG entails an initial calculation
of image gradients, followed by the image's segmentation into a grid. For each pixel,
the gradient direction and magnitude are ascertained, leading to the construction of
gradient orientation histograms for all pixels encompassed within each grid cell.
These individual histograms are subsequently concatenated to compose the final
feature histogram. HOG effectively encapsulates local shape information, while
simultaneously mitigating the influence of lighting and color variations on the image,
thus reducing the dimensionality of the requisite representation data. The inherent
relationships between local pixels are aptly represented, rendering HOG suitable for
predicting masked image patches and for self-supervised pretraining. Contrary to the
direct usage of Histogram of Oriented Gradients (HOG) features, the adopted
approach forecasts HOG feature maps for masked images, wherein specific patch

regions remain obscured from sight.

2.1.3 The encoder in the Mixup Feature method

The encoder in the Mixup Feature method is ViT [6], following the MAE
strategy applied only to unmasked patches. Similar to the standard ViT, our encoder
embeds patches by incorporating a linear projection of positional embeddings,

subsequently processed through a sequence of transformer blocks.

52

As depicted in Figure 2.2, the ViT architecture is comprised mainly of two parts
within the Transformer encoder, Multi-head Self-Attention (MSA), and Multilayer
Perceptron (MLP).

The mathematical formulation of the single-layer Encoder structure in ViT is as

follows:

Transformer Encoder

A

L x e

Vision Transformer (ViT)

MLP
Head

T

Transformer Encoder

|
T TLLLT LT

* Extra learnable
[Lmear PI‘OJBCUO[] of Flattened Patches

[class] embedding
SR T T T 17T | .
= n—».il%ﬁm!@@ﬁ
£ Ls

MLP
©

Multi-Head
Attention

11

Norm

Embedded
Patches

Figure 2.2. ViT architecture [6].
X;n denotes the input data, from which we derive three vectors—@Q (query),
K (key), and V (value) —through linear transformation. This is illustrated in

equations 2.3, 2.4, and 2.5, with PE indicating positional encoding.

Q = Wi(X;, + PE) (2.3)
K = Wk(X;,, + PE) (2.4)
V =WY(Xy, + PE) (2.5)

Subsequently, the similarity between Q and K is calculated, then multiplied by

V to yield the ultimate self-attention output. Finally, a linear fully-connected layer is

53

utilized to map the mid-level feature dimensions to output feature dimensions. As

illustrated in equation 2.6, LN stands for LayerNorm. d, represents the dimension.

X LN <l' < ft <QKT> V) + X) (2.6)
out = inear | softmax in :
t an

Upon completion of the Self-Attention process, a feed-forward network (FFN)
layer is introduced to manage the X,,,;, as depicted in equation 2.7.

Y = LN(FFN(Xout) + Xout) (2.7)
2.1.4 The Decoder in the Mixup Feature Method

The Mixup Feature method's decoder receives a complete token set, which
includes the encoded visible patches and the masked tokens. Please refer to Figure
2.1. Each masked token is a shared learned vector [31], indicating the presence of a
missing patch to be predicted. Adding position embeddings to all tokens in the full
image patch set, the positional encoding indicates the location of each patch within
the image. Without such embeddings, the masked tokens wouldn't possess
information about their location in the image.

The decoder is used only during pre-training for the image reconstruction task.
Therefore, the decoder's architecture can be designed flexibly, independent of the
encoder's design. Experiments were conducted with a decoder that is narrower and
shallower than the encoder. Relative to the encoder, this standard decoder processes a
lower computational cost for each token. With this asymmetric approach, there is a

marked reduction in pre-training duration, thereby enhancing efficiency.

54

2.1.5 Mixup Feature Self-Supervised Pre-Training Process

In the self-supervised pre-training process, the loss function is defined as the L2
loss between the reconstructed mixed feature map and the original mixed feature map
obtained. The study also explored two distinct reconstruction types: one that
normalizes the mixed feature map and another that does not. The experimental
results suggest that using the non-normalized mixed feature map as the reconstruction
target yields better performance in downstream tasks. More details will be provided

in the following experimental chapter.

Algorithm 1 Pseudocode for Mixup Feature Pre-training

Input ' D = {x1,x?, ..., x"}

Output: Pre-trained Model

L:loss, Optim: optimizer

A: Mixup hyperparameters,r: masked rate
Initialize Model Masked Autoencoder

For epoch in epochs .

Initialize L
For d in Dataloader(D):
f1=get_feature_1(d)
f. = get_feature_2(d)
Mixup_f = Mixup(f,f2,4)
Predict f, mask = Model Masked Autoencoder(d,r)
L = Loss(Predict f, Mixup_f)
L.backward()
Optim.step()
End For
End For
Save(Model Masked Autoencoder)

55

Pseudocode for the Mixup feature self-supervised pre-training stage is illustrated
in Algorithm 1.

Where f; and f, are two types of feature maps, and the Mixup() function
corresponds to the operation in Equation 2.1.

The Loss function is defined as follows:

2
(2.8)

n
1
L =min % ||fpredict - fmixup
i=1

Above is the outline of the algorithmic method I've introduced. A

2

comprehensive discussion of the experimental setup and results will be featured in

Chapter 3.

2.2 Denoising Self-Distillation Masked Autoencoder

Compared to traditional contrastive learning experiments, MAE has effectively
pre-trained large models and showcased superior performance when fine-tuned on
ImageNet [54]. Like MAE, the majority of MIM objective functions only calculate
the MSE loss of the masked regions in the reconstructed image at a pixel level. This
proxy task has limitations and might lead to the inability to learn abstract semantic
information in images, which is a crucial component of image understanding. To
address this issue, we propose a denoising self-distillation Masked Autoencoder
model [85] that considers both feature-level regression and pixel-level restoration.

As depicted in Figure 2.3, the approach is designed to remove random Gaussian
noise from images and project encoded features onto target features. This method

draws inspiration from the MAE concept and also adopts the self-distillation

56

framework. Instead of gradient-based updates, the teacher network employs the
Exponential Moving Average (EMA) for parameter updates [38]. The architecture of
the student network includes an encoder, regressor, and decoder. Features are
extracted from the input by the encoder, where the input is made up of noise patches
inserted at random. Using the representations of the noise patches, the regressor
forecasts the representations of the target blocks. In the end, the decoder projects the

anticipated noise patcher features onto the original image patches.

Student) Predict
=

] D
Regressor
EMA b i
Pixel Level

| Features level

[
L

Random mask
Gaussian noise

- - — -

Figure 2.3. Denoising Self-Distillation Masked Autoencoder Framework [85].

2.2.1 Random Mask Gaussian Noise

The image is segmented into non-overlapping patches according to a predefined
patch size, generating a patch set denoted as X = {x4,x,,...x,}. Subsequently,

Gaussian noise is added to a random sample of the patch set X based on a set mask

57

noise ratio. The random sampling approach used is straightforward and efficient,
carried out with a uniform distribution and without any replacements.

During each iteration of the pre-training phase, a mini-batch B comprising
images is sampled. For a given index i within B, the i — th image in the mini-batch is
denoted as x;. This image, x;, is partitioned into a collection of patches, represented
as xj,, based on a predetermined patch size. Subsequently, Gaussian noise is
introduced to a subset of these patches, chosen randomly in accordance with a
predefined masking noise ratio r, yielding x;,,. The teacher network employs x;, as
its input, whereas the student network uses x;,,. The pretext task is centered around
reconstructing the pristine patches from their noisy counterparts, essentially

executing a denoising operation.
2.2.2 The Encoder of the Denoising Self-Distillation MAE

The role of the encoder fy_(x;y) in the student network is to map the noisy
block x;,, to the latent representation Z,,, as demonstrated in Equation 2.10. This
procedure encompasses all patches in the image x;,, that is, including patches
without added Gaussian noise, x;, is derived from x;,, as demonstrated in Equation
2.9. The encoder utilizes the ViT architecture, beginning with patch embedding and
incorporates position embedding to preserve spatial information. Subsequently, the
combined embedding is processed through a Transformer encoder, finally generating
Zy.

The parameters of fp (x;,) are updated by means of gradient-based

optimization. Likewise, the encoder fg, (x;,) in the teacher network and the encoder

58

fo, (Xin) in the student network share a similar network architecture to accomplish
the mapping from x;, to the latent representation Z,, as demonstrated in Equation
2.11. The parameters of fg,_ (x;,) are updated by employing the exponential moving

average of the parameters of fg_ (x;).

Xin = fRandom Mask Gaussian noise (xio) (2-9)
Zyn = fo, (xXin) (2.10)
Z, = fo, (xi0) (2.11)

2.2.3 The Decoder of the Denoising Self-Distillation MAE

The purpose of the decoder is to map the latent representation Z,, to the denoised
patch Y,, = ¢(Z,,). The decoder also adopts the VIT architecture, but it exhibits an
asymmetric structure in comparison to the encoder. The decoder only requires a few
layers of VIT, significantly reducing the parameters. The input to the decoder only
contains the latent representation and position embedding of the noise block. This

procedure is mainly for image denoising, constituting pixel-level image restoration.

2.2.4 The Regressor of the Denoising Self-Distillation MAE

The main function of the Regressor is to map the features Z;, output by the
student network encoder to the features Z, output by the teacher network encoder.
Z;, and Z,, represent the features of patches excluding those where Gaussian noise has
not been added. Regression is performed solely on the noise patches for feature

alignment. I implement the Regressor using a VIT structure without a linear head.

59

2.2.5 Pixel-level Restoration

The objective function of Denoising Self-Distillation MAE consists of two parts,
pixel-level restoration, and feature-level regression. Under pixel-level restoration, we
consider the original image x;, as the recovery target, that is, the original image.
Through minimizing the L2 loss of the restored image Y;;,, and the original image x;,,,
the model gains the capacity to capture local feature information. The pixel-level

restoration loss is illustrated in Equation 2.12.

N
Lp = min%Z D (¢ (fGS (xln)) rxio)

| 2

(2.12)

Yinj - xin
i JEP;

P in Equation 2.12. represents the patches set. ¢ represents the decoder.
2.2.6 Feature-level Regression

Through feature-level regression, the study further maximizes the mutual
information I(Z,,,Z,"). The process involves predicting the original, undamaged
feature representations Z," in the teacher encoder based on the noisy view
representations Z,' in the student encoder, denoted as F,:Z, > Z,". The
optimizer's goal for the regressor is to maximize the feature cosine similarity between
¢, (Z}) and the output Z," of the teacher encoder, as shown in Equation 2.13. The
problem of maximizing feature cosine similarity is then transformed into a

minimization problem, as indicated in Equation 2.14.

60
L, = maxlogqy (Z,',Z,)

~ max ?:1 ¢r(f95 (xln) Sg [fet(xio)]ml (2.13)

(9 (o Con)) Zimi(s91fo,)]’

Ly = min(1 — L,) (2.14)
In Eq. 2, sg[-] represents the stop gradient operation, m’ represents the index of
the noise patches.
The final loss of denoising self-distillation MAE is the weighted sum of the two
losses L, and Ly, as shown in Equation 2.15.
L = min(AL, + (1 — A)Lf), 1 € (0,1) (2.15)

The value of A will be discussed in the experimental chapter.
2.2.7 Distillation Strategy

The main purpose of self-distillation learning and the EMA (Exponential
Moving Average) update strategy is to leverage the knowledge of the powerful
teacher model to guide the student model [94].

Denoising self-distillation MAE updates the parameters 6; of the student
network through backpropagation to minimize the final loss function described in
Equation 2.15. On the other hand, the teacher network is updated using an
Exponential Moving Average (EMA) in a momentum-based manner. Specifically,
the parameters 6, of the student encoder are used to update the 8, parameters of the

teacher encoder, as indicated in Equation 2.16.

0, = nb,+ (1 —n)o, (2.16)

61

Heren € [0,1) is the momentum hyperparameter, which is generally set at 0.99.
The cosine scheduler is configured to update n. This scheduler, a commonly utilized
method for learning rate reduction, when applied to the momentum hyperparameter
within the Exponential Moving Average (EMA) strategy, facilitates progressive
adjustment of the momentum value to meet the needs of different training stages.
Upon completing a batch's training, the newly updated EMA momentum 7 is utilized
to refresh the model's parameters.

The pseudocode for the denoising self-distillation MAE self-supervised pre-
training stage is illustrated in Algorithm 2. In the pseudocode, D represents the

dataset, and final_loss corresponds to Equation 2.15.

Algorithm 2 Pseudocode for denoising self-distillation MAE

Input ' D = {x},x2,..,x7%}

Output: Pre-trained Model

L: Final Loss, Optim: optimizer

A: final loss function hyperparameter,r: masked noise rate
17: momentum hyperparameter

Initialize student _network (-;), with parameters O

Initialize teacher _network (-,), with parameters 0 < O

For epoch in epochs .

Initialize L

For d in Dataloader(D):

dn' maSkindex = fRandom Mask Gaussian noise (d, 1')
Z, = student_encoder(d,)

Y, = student_decoder(Z,)

Z, = teacher_encoder(d)

Z, = student_regressor(Z, - mask;,geyx)

L = Final Loss(Yp,d, Z,,Z,,)

L.backward() // Gradient update for student network parameters 6

62

Optim.step()
End For
/' Non-gradient (exponential moving average) update for
teacher _network parameters 0,
0, <« 16, + (1—1n)06;
End For

Save(student model)

2.3 Conclusion of Chapter 2

Chapter 2 presents two novel self-supervised learning algorithms centered on
masked image modeling that advance visual feature learning.

The first algorithm, Mixup Feature, proposes a new pretext task of
reconstructing a Mixup of traditional image features like Sobel, HOG, and LBP as the
target for a masked autoencoder. This unique mixed feature target provides more
complex visual representations for pretraining.

The second algorithm, Denoising Self-Distillation Masked Autoencoder,
combines self-distillation with masked autoencoders for robust denoising. It
considers both pixel-level image restoration and feature-level regression. Gaussian
noise is randomly added to image patches as a pretext task for the student network to
denoise. The teacher network guides the student through exponential moving average
parameter updates. An asymmetric decoder further enhances efficiency. The loss
function balances pixel reconstruction loss and feature alignment loss.

In summary, this chapter presents two novel masked image modeling algorithms

for self-supervised visual feature learning. Mixup Feature explores mixed traditional

63

feature targets to provide richer representations. Denoising Self-Distillation Masked
Autoencoder combines self-distillation and denoising to learn robust features
efficiently. Both methods demonstrate unique innovations in advancing self-
supervised techniques through masked image modeling objectives. The experimental
setup, results, and analyses of both algorithms are further discussed in depth in the

following chapter.

64

CHAPTER 3. EXPERIMENTS AND RESULTS ON MIXUP FEATURE AND
DENOISING SELF-DISTILLATION MASKED AUTOENCODER

ALGORITHMS

In the realm of self-supervised visual feature learning, rigorous empirical
validation is pivotal to ascertain the efficacy and robustness of proposed
methodologies. In this chapter, we delve into a comprehensive evaluation of two
novel methods, namely the Mixup Feature technique and the Denoising Self-
Distillation Masked Autoencoder.

This chapter begins with a comprehensive explanation of the chosen pre-training
datasets, detailing their complexities and significance. Subsequently, the
experimental configurations for the two proposed methodologies are delineated,
offering clarity on the operative mechanisms and settings involved.

The subsequent segment concentrates on model evaluation. It enumerates the
primary metrics and their respective outcomes and engages in a visual representation
of the pre-training experimental results, which enhances the interpretability and
comprehensibility of the findings.

In pursuit of a holistic understanding of the algorithmic dynamics, ablation
studies are conducted. Such an approach enables me to discern the contributive
significance of individual components, facilitating a more granular assessment of
their collective impact on the overarching performance of the self-supervised pre-

training models.

65

3.1 Self-Supervised Pre-Training Dataset

The prevailing approach entails pre-training SSL models on meticulously
curated datasets such as ImageNet [54] and alternative datasets like PASS [55]. Such
datasets are typically class-balanced and harbor object-centric images where the
object predominantly resides at the photograph's center. However, the sheer
magnitude of these datasets necessitates substantial computational resources.
Considering computational constraints, a decision was made to pre-train on more
compact datasets, with subsequent evaluations conducted on the self-supervised pre-
trained models. Consequently, CIFAR-10 [56], CIFAR-100 [56], and STL-10 [57]
were selected as the foundational datasets for these self-supervised pre-training

endeavors.

airplane ﬁ.% V..=&:
automobile EHE‘H‘
o Sl WSS DR
oot EEH.-.E.Q!

deer

dog
frog
horse

ship

d!h.ﬂliﬂll

Figure 3.1. CIFAR-10 Dataset samples [56].

truck

66

CIFAR-10 Dataset

The CIFAR-10 dataset is a renowned benchmark in the machine learning and
computer vision communities. It consists of 60,000 32x32 color images spanning 10
distinct classes, with each class containing 6,000 images. The dataset is partitioned
into 50,000 training images and 10,000 testing images. The 10 classes encompassing
this dataset are airplane, automobile, bird, cat, deer, dog, frog, horse, ship, and truck.
Some samples of random visualization are shown in Figure 3.1. Given its relatively
moderate size and diverse content, CIFAR-10 has often served as a go-to dataset for
developing and validating novel algorithms, particularly in the domain of image
classification.

CIFAR-100 Dataset

An extension of the CIFAR-10 dataset, CIFAR-100 provides a more granular
and challenging benchmark. Like its predecessor, it comprises 60,000 32x32 color
images, but these are spread across 100 classes, with each class accounting for 600
images. To add an additional layer of complexity, these 100 classes are grouped into
20 super classes. Each superclass encompasses 5 classes, introducing a hierarchical
structure to the dataset. Examples of super classes include aquatic mammals, fruits
and vegetables, and vehicles. The dataset's split remains consistent with CIFAR-10,
allocating 50,000 images for training and 10,000 for testing. Given its increased class
variability, CIFAR-100 is employed when a more intricate classification task is
desired.

STL-10 Dataset

Figure 3.2. STL-10 Dataset samples [57].

The STL-10 dataset is designed specifically for developing and benchmarking
unsupervised feature learning and self-taught learning algorithms. A distinct aspect of
STL-10, compared to datasets like CIFAR-10 and CIFAR-100, is that it offers a more
challenging set of images derived from a larger dataset, ImageNet. The dataset

comprises 96x96 color images across 10 different classes, specifically: airplane, bird,

68

car, cat, deer, dog, horse, monkey, ship, and truck. Visual exemplars from each class
can be referenced in Figure 3.2. However, the data distribution is different:
e Unlabeled Data, A significant portion of STL-10 is the 100,000 unlabeled images,

which are intended for unsupervised learning or pre-training.

e Training Data, the labeled part of the dataset contains 5,000 images (500 images

per class).

e Testing Data, the test set consists of 8,000 images (800 per class).

Given the high-resolution nature of its images relative to CIFAR datasets and its
emphasis on unsupervised learning, STL-10 serves as a valuable intermediary
benchmark, positioned between small datasets like CIFAR and large-scale datasets
like ImageNet. It tests the scalability of algorithms to more realistic image sizes while
still being computationally manageable.

The dataset has been a cornerstone for researchers focusing on unsupervised or

self-supervised methodologies in computer vision.

3.2 Evaluation for SSL Models

Evaluating self-supervised pre-training primarily involves assessing the pre-
trained models on 1mage classification tasks, given that image classification remains
central to computer vision. Presently, the mainstream methodologies primarily
adhere to three main protocols: k-Nearest Neighbors (KNN), linear, and full fine-

tuning evaluations. These three protocols pertain to offline evaluation techniques,

69

executed post the self-supervised training regimen, and stand in contrast to the online
evaluations carried out amidst the training phase.

KNN

KNN [58] is a well-known unsupervised machine learning method widely
utilized. In high-dimensional spaces, measuring distances between samples might be
affected by the "curse of dimensionality," limiting the effectiveness of KNN.
Therefore, directly evaluating the performance of its representations on these
downstream tasks might be more meaningful than using KNN. In the study of self-
supervised representation learning, typical evaluation methodologies include using
linear classifiers, full fine-tuning, and performance analysis on downstream tasks to
ascertain the quality of the acquired representations. These methods provide a direct
assessment of the representations' applicability.

Linear Probe Evaluation

In the field of self-supervised learning, linear evaluation, or linear probe
evaluation [59], initially proposed training a linear classifier on pre-trained feature
representations. In this evaluation approach, features are extracted using a pretrained
self-supervised model, and then a linear classifier is trained on these features to
accomplish a specific supervised task. The fundamental idea behind this method is
that if a model's learned representation is robust, even a simple linear classifier
should achieve good performance on these representations. The protocol is a staple in

numerous studies, and its popularity stems from several fundamental reasons:

70

e Simplicity: Linear classifiers have a fixed and straightforward structure,
making performance comparisons across different representations more

direct and fair.

e Limited Model Complexity: The simplicity of linear classifiers implies they
cannot "compensate" for shortcomings in the original representations. Thus,
if a linear classifier performs well on a certain representation, it likely

signifies that the representation has captured essential data features.

e Efficiency: Its computational cost isn't high, making evaluations on large-

scale datasets more feasible.

Specifically, the experiment process necessitates freezing the backbone network
and appending a linear layer at the terminal stage, with training extending for
approximately 100 epochs to reach completion. The advantages of employing
lightweight parameters for linear evaluation, alongside the concurrent evaluation of
multiple linear heads, facilitate optimizing numerous hyperparameters within the
model [59].

Full Fine-tuning

Full fine-tuning was introduced as an evaluation metric in the MAE paper. Since
linear probing's performance isn't directly correlated with fine-tuning and transfer
learning, a small MLP head cannot assess non-linear features. Most subsequent
works [32,42,60] adopted this type of evaluation. In terms of fine-tuning, the
performance of contrastive methods falls short compared to masked image modeling,

mainly because they aren't very "optimization-friendly" [61], this also piqued

71

researchers' interest in MIM. The drawback of this evaluation method is its high
computational cost, necessitating the retraining of the entire network.

Visual Evaluation

Cond. RCDM Samples
@)
3
(2}
=
A
o
=
(=]

suoqyoeg /juniy

mowy \ L mopeg BayoIn

ouig

o

BayoIA

pasiatedng Qmopeg

Figure 3.3. RCDM visualization, Figure from [62].

Although self-supervised learning methods have achieved significant success in

downstream tasks, our understanding of these algorithms and their learned

72

representations remains limited. Visualizing the representations or reconstruction
targets by self-supervised learning methods can enhance our understanding. MAE
visualizes the reconstruction targets of the decoder, thereby further assessing what
information 1s contained in and excluded from the representations. The
Representation Conditional Diffusion Model (RCDM) is a tool [62] designed to
visualize the representations learned by self-supervised learning methods. As
illustrated in Figure 3.3, by comparing the representations learned at the projector
level to those learned at the backbone level. Through visualization, it becomes
evident that projector representations retain only global information, lacking
contextual preservation, as opposed to backbone representations. This observation
suggests that visual evaluation of the self-supervised learning model contributes to an

in-depth understanding of self-supervised learning mechanisms.

3.3 Experimental Analysis of the Mixup Feature Method

To ascertain the efficacy of the novel method introduced, comparisons were
drawn with antecedent generative-based and contrastive learning-based self-
supervised learning algorithms. Extensive pre-training experiments were conducted
across three distinct datasets—CIFAR-10, CIFAR-100, and STL-10—utilizing
encoders of varying dimensions (ViT-Tiny, ViT-Small, and ViT-Base) each targeting
specific reconstruction objectives. Although each model—ViT-Tiny, ViT-Small, and

ViT-Base—comprises 12 transformer blocks, they are differentiated by their hidden

73

sizes, with ViT-Tiny possessing a hidden size of 192, ViT-Small 384, and ViT-Base
768.

This study conducts benchmark evaluations employing linear probing and full
fine-tuning classification techniques. During the pre-training phase, the Mixup
Feature model is developed using a self-supervised approach, independent of labels
within the selected dataset. For the evaluation, the decoder utilized in the pre-training
phase 1s omitted, maintaining solely the pre-trained encoder, to which a classification
head is appended to carry out classification tasks. During linear evaluation, the
parameters ingrained by the encoder throughout the pre-training phase remain static,
with only the linear classification head being trained and assessed against the test
subset of the dataset. In the full fine-tuning evaluation, both the pre-trained encoder
and the fully connected layers are subjected to training. The study further includes
ablation experiments to elucidate the effects of image augmentation, as well as the
impact of masking rates and mixup hyperparameters on the reconstruction tasks of

the feature map.

3.3.1 Implementation Details

The experiments conducted on the CIFAR-10 and CIFAR-100 datasets
incorporated the VIT-Tiny and VIT-Small architectures to curb the potential for
overfitting. For trials on the STL-10 dataset, the VIT-Small and VIT-Base ViT
architectures were selected. The CIFAR-10 and CIFAR-100 datasets are comprised

of 32 x 32-pixel images, for which a block size of 2 x 2 pixels was chosen. In

74

contrast, the STL-10 dataset consists of 96 x 96-pixel images, prompting the
selection of a 6 % 6-pixel block size for these experiments.

Table 3.1 Pre-training settings

Config CIFAR-10 or 100 STL-10
architecture ViT-T\ViT-S ViT-S\ViT-B
batch size 1024\1024 1024\512
patch size 2 6
optimizer AdamW [64]
optimizer momentum B1, B2 = 0.9,0.95
weight decay 0.05
learning rate schedule Cosine decay [63]
base learning rate 1.5¢-4
warmup epochs [65] 50
Epoch 1600\1600 1500\1200

Table 3.2 Fine-tuning setting

Config CIFAR-10 or 100 STL-10
architecture ViT-T\ViT-S ViT-S\ViT-B
batch size 1024\1024 1024\512
drop path 0.1 0.1
optimizer AdamW [64]
optimizer momentum B1, B2 = 0.9,0.999
weight decay 0.75
learning rate schedule Cosine decay [63]
base learning rate 2e-3 le-3
warmup epochs [65] 10
epoch 100

The default configurations for pre-training can be found in Table 3.1. Default

settings for fine-tuning are detailed in Table 3.2. The tables presented display various

75
hyperparameters in the first column. The second column showcases parameter
configurations for CIFAR-10 and CIFAR-100, while the third column is dedicated to

configurations for the STL-10 dataset.

Algorithm 3: Learning Rate Scheduling with Warmup and Cosine Decay

Input:initial learning rate,max_learning rate,min_learning rate,warmup_epochs,
total_epochs

Initialize optimizer

for current_epoch to total_epochs do .

// Warmup phase
if current_epoch < warmup_epochs then:

Ilr « initial_learning_rate + (max_learning_rate —

L a . current_epoch
initial_learning_rate) » (—— P22
warmup_epochs

// Cosine decay phase

else :

current_epoch — warmup_epochs

alpha «

total_epochs — warmup_epochs
lr « min_learning rate + 0.5 * (max_learning_rate —
min_learning_rate) * (1 + cos(pi * alpha))
end if
// Update the learning rate of the optimizer
set_learning rate(optimizer, Ir)
train_one_epoch()
End For
Save(student model)

The optimizer employed is AdamW [64], a variant derived from the Adam
optimizer, with enhancements in the approach to weight decay. Compared to
traditional Adam, it offers superior regularization, aiding the model in better
generalizing to new data and achieving faster convergence.

The adjustment of the learning rate adopts a strategy combining Cosine decay

[63] and warmup [66]. Specifically, warmup is executed at the beginning of training,

76

and after the completion of warmup, cosine annealing is used to gradually reduce the
learning rate. During the Warmup phase, if the current epoch is less than
warmup_epochs, the learning rate linearly increases from initial_learning_rate to
max_learning_rate. During the Cosine decay phase, if the current epoch is greater
than or equal to warmup_epochs, the learning rate is adjusted using the cosine

annealing strategy. The pseudocode is shown in Algorithm 3.

3.3.2 Mixup Feature Scheme

The model i1s designed to reconstruct the Mixup feature map for each masked
patch, with the decoder generating the reconstructed Mixup feature map. The mean
squared error between the predicted and the target feature map constitutes the loss
function. This study computes the loss across the entire predicted Mixup feature map,
in contrast to methods like MAE that calculate loss solely within the masked areas.
Additionally, the normalization of the reconstructed feature map was omitted in these
experiments. It was noted that such normalization impacts the experimental results, as
normalizing the reconstruction loss could result in significantly reduced values,
which may lead to gradient vanishing issues during the optimization process. This
approach diverges from the loss computation employed in MAE, where image pixel
reconstruction is the focus.

To ascertain the efficacy of the proposed method, comparative analyses were
conducted among experimental outcomes derived from various reconstruction targets,
encompassing individual feature maps and their pairwise combinations. These

evaluations of self-supervised pre-training methods, predicated on distinct

77

reconstruction targets, were executed across three datasets. Table 3.3 shows the
results of full fine-tuning experiments, and Table 3.4 represents the results of linear
probing experiments. The "+" symbol indicates the direct addition of two feature
maps, while "Mixup" refers to the operation specified in equation (2.1) performed on
the two feature maps inside the brackets. Our findings suggest that the feature maps
generated by Mixup enhance the performance of experimental evaluations on the test
set when compared to prior MAE methodologies.

Table 3.3 Full Fine-tuning (Top1-accuracy)

reconstruction target mask CIFAR-10 CIFAR-100 STL-10
rate ViT-tiny ViT-small ViT-tiny ViT-small ViT-small ViT-base

scratch baseline (6] 73.89 79.96 51.25 55.57 78.76 82.36
Pixels (MAE) [33] 0.75 89.87 91.79 66.72 67.83 86.20 87.69
LBP feature map 0.5 88.27 90.14 65.96 66.59 85.62 86.90
HOG feature map [68] 0.4 90.12 91.75 66.83 67.86 86.23 87.85
Sobel edge map 0.6 90.03 91.67 66.54 67.28 86.12 87.79
LBP + HOG 0.5 88.93 90.78 66.25 66.93 85.92 87.43
LBP + Sobel 0.5 88.90 90.93 66.31 66.99 86.11 87.31
HOG + Sobel 0.5 89.11 90.84 66.67 67.45 86.18 87.57
Mixup (LBP, HOG) 0.5 90.17 91.91 66.83 67.60 86.42 87.77
Mixup (LBP,Sobel) 0.5 90.08 91.86 66.85 67.75 86.29 87.89
Mixup (HOG,Sobel) 0.5 90.56 92.09 67.12 67.77 86.55 88.06

Table 3.4 linear probing (Topl-accuracy)

reconstruction target mask CIFAR-10 CIFAR-100 STL-10
rate ViT-tiny ViT-small ViT-tiny ViT-small ViT-small ViT-base

Pixels (MAE) [33] 0.75 75.45 77.52 50.12 54.10 79.39 83.72
LBP feature map 0.5 74.30 75.74 45.96 52.85 78.17 82.65
HOG feature map [68] 0.45 75.50 77.89 50.30 54.15 79.92 83.98
Sobel edge map 0.6 75.41 77.68 49.74 53.96 79.46 83.81
LBP + HOG 0.5 74.82 76.47 47.23 53.34 78.73 82.78
LBP + Sobel 0.5 74.78 77.31 48.44 52.93 78.20 82.03
HOG + Sobel 0.5 75.11 77.26 48.02 53.67 78.13 82.89
Mixup (LBP, HOG) 0.5 75.47 77.81 49.61 53.94 79.86 83.89
Mixup (LBP,Sobel) 0.5 75.39 77.75 49.98 54.08 80.19 84.05
Mixup (HOG,Sobel) 0.5 75.96 77.89 50.39 54.55 80.43 84.12

The validation of Mixup's effectiveness through various reconstruction targets reveals
that the mere aggregation of feature maps does not enhance the feature-extraction
capabilities of pre-trained models. Indeed, the outcomes of simple additive

reconstructions fall short compared to those of single-feature reconstructions.

78

Figure 3.4. Randomly visualizing mixed feature predictions. All images are from the

validation set of STL-10.

79

Nevertheless, Mixup of feature maps, particularly those involving HOG and Sobel
methods, yielded superior results. Regarding the STL-10 dataset, feature maps
reconstructed using the proposed strategy were visualized. Figure 3.4 illustrates these
results, sequentially presenting the original image, the masked image, the target
mixed feature map, and the reconstructed mixed feature map.

In the experiments, the models pre-trained using the Mixup strategy
demonstrated significant performance improvements across multiple datasets.

Specifically, when tested on the CIFAR-10 and CIFAR-100 datasets, our Mixup
Feature pre-trained models, in their optimal configuration, realized an accuracy boost
of nearly 10% compared to the baseline trained from the ground up. On the STL-10
dataset, with the ViT-small as the backbone network, we noted a performance uptick
of 9% relative to the baseline. And when employing the more complex ViT-base as
the backbone network, there was still an impressive 5% growth in performance.
These results not only validate the effectiveness of the Mixup Feature pre-training
strategy but also emphasize the potential performance differences of different
backbone network structures when facing self-supervised learning tasks, offering

valuable insights for subsequent research.

3.3.3 Masking Ratio

The study examines the influence of varying percentages of patch masking on
the feature extraction capabilities of pre-trained models. In Figure 3.5, the masking
rate vs accuracy curve was obtained from (a) Full fine-tuning experiments and (b)

linear probing experiments

fine-tuning

linear probing

100

O
o

(00]
o

~
o

60

100

90

60

50

—- CIFAR-10 —#&— CIFAR-100 -4 STL-10

20 40 60 80
masking ratio (%)

(a) Full fine-tuning experiments

—- CIFAR-10 ~#&- CIFAR-100 ~-@- STL-10

—

] A& A A

20 40 60 80
masking ratio (%)

(b) linear probing experiments

Figure 3.5 The masking rate vs accuracy curve

80

81

The y-axis represents the corresponding validation accuracy (%), and the x-axis
represents the corresponding masking rate. The outcomes of two experiments were
presented, indicating that models exhibit improved accuracy with a masking rate
between 40% and 60%. This contrasts with the higher masking rates employed in the
MAE pixel reconstruction tasks, suggesting that the effectiveness of the mixup
feature method hinges upon the availability of a sufficient number of visible patches.
The pair of experiments shown in Figure 2 were performed on three different datasets,
with HOG and Sobel as the feature maps utilized for Mixup. In Table 3.3, this
combination achieved the best experimental results. The experimental results show
that an excessive masking rate makes the reconstruction of Mixup features overly
complicated, while a too low masking rate oversimplifies the reconstruction. When
the mask rate is set to zero, the model only learns how to extract HOG feature maps
and Sobel edge information, limiting its ability to learn sufficiently abstract semantic

information from images.

3.3.4 Mixup Factor 4

The mixing factor between two feature maps is pivotal for model performance.
An investigation into its impact involved conducting experiments on the
hyperparameter A, which ranges from 0 to 1 as per equation (2.1). This investigation
encompassed pairwise combinations of three distinct feature types across three
datasets. Figure 3.6 illustrates the influence of the hyperparameter blending factor 4

on Full Fine-tuning performance.

cifar-10 test acc (%)

cifar-100 test acc (%)

91.0

82

90.5 -

90.0 -

89.5 4

89.0 -

88.5 A

HOG-Sobel -1 LBP-HOG

LBP-Sobel

88.0

68.0

0.0

0.2 0.4 0.6
mixup A (a)

0.8

1.0

67.5 1

67.0 A

66.5

66.0 A

55.5 ~

HOG-Sobel LBP-HOG

LBP-Sobel

65.0

0.0

0.2 0.4 0.6
mixup A (b)

0.8

1.0

83

87.00
86.75 4

HOG-Sobel LBP-HOG LBP-Sobel

86.50 -
86.25 -
86.00 -
85.75

STL-10 test acc (%)

85.50 -
85.25 1

85-00 I I I I I |
0.0 0:2 0.4 0.6 0.8 1.0

mixup A (c)

Figure 3.6 The impact of various mixup factors A

The experimental results from the CIFAR-10, CIFAR-100, and STL-10 datasets
are represented by subfigures (a), (b), and (c) respectively. On the x-axis, the mixup
factor A is shown, varying from 0 to 1 in steps of 0.1. The two Mixup features shown
in Figure 3.6 are implemented based on (2.1), such as HOG-Sobel, where HOG refers
to f; in (2.1) and Sobel refers to f,. The y-axis represents the Top-1 accuracy of Full
Fine-tuning.

The results from all three datasets consistently show that the HOG-Sobel Mixup
feature combination outperforms the features from the other two Mixup pairings.
Setting A to 0 or 1 corresponds to using a single feature, either f, or f;, for the

purpose of reconstruction. The right configuration of A can lead to better model

84

performance as compared to relying solely on a single feature. Yet, the experimental
performance degrades with an emphasis on the LBP feature map due to less-than-
ideal results from the LBP experiments. In the case of the HOG-Sobel combination,
the best results were obtained in experiments across all three datasets when A was set
to 0.2 or 0.3. When A leans towards the Sobel edge feature map, the reconstruction

Mixup feature method yields the best results.

3.3.5 Comparisons with Previous Results

Table 3.5 Compared with previous methods (Topl-accuracy)

Method backbone CIFAR-10 CIFAR-100 STL-10

MoCo v2 [30] ResNet-18 89.55 62.79 85.96
BYOL [38] ResNet-18 88.51 62.36 83.36
SimCLR [27] ResNet-18 86.01 58.21 82.35
SimSiam [39] ResNet-18 83.33 51.76 84.24
MAE [33] Vit-Small 91.79 67.83 86.09
Mask feat [68] Vit-Small 91.75 67.86 86.20
Mixup-feature (ours) Vit-Small 92.09 67.77 86.55

To perform a more exhaustive evaluation and benchmark against previous
methodologies, a fine-tuning process was executed across all listed self-supervised
learning approaches, assessing their performance on three distinct datasets. The
comprehensive results are delineated in Table 3.4. The selected architecture for
generative self-supervised learning was the ViT-small, whereas ResNet-18 [69]. was
utilized for contrastive learning approaches. The Mixup-feature technique was
applied to reconstruct the HOG-Sobel feature map. When juxtaposed with the fine-
tuned outcomes of the generative self-supervised ViT-Small model, the results were

on par. On the CIFAR-10 and STL-10 datasets, the proposed method surpassed

85

others, achieving accuracies of 92.09% and 86.55%, respectively. For the CIFAR-100
dataset, performance was slightly lower than that of Mask Feat [68] by a margin of
0.9%. It 1s noteworthy that generative models based on Masked Image Modeling
have exhibited substantial advancements over traditional contrastive learning
methods. Notably, generative models generally necessitate less pre-training time than
their contrastive learning counterparts. The pre-training duration for the proposed

method was comparable to that required for the Masked Autoencoder approach.

3.3.6 Data Augmentation

The investigation explored the influence of various data augmentation
techniques on the model's experimental outcomes. The experimental configuration
for the method was established with a mask ratio of 50%, a mix factor (A) set at 0.2,
and the combination of HOG and Sobel feature maps as the target for reconstruction.
Table 3.6 elucidates the discrepancies arising from distinct data augmentations
employed during the Mixup feature pre-training phase. A comparative analysis was
conducted on data augmentation methods comprising random cropping, color
jittering, and RandAugment [70]. Experimental results indicate that only using
random cropping for data augmentation is the most effective, color jittering has
minimal impact on the results, and RandAugment [70] slightly reduced performance.
The impact of data augmentation on the proposed method appeared to be relatively
modest, indicating that commendable levels of accuracy are sustainable even without

its application. In contrast to contrastive learning approaches that are heavily

86

dependent on data augmentation, achieving favorable outcomes in the absence of
such augmentations poses a considerable challenge.

Table 3.6 The influence of the data augmentation (Topl-accuracy)

Augmentation CIFAR-10 CIFAR-100 STL-10
Method ft lin ft lin ft lin
none 91.8 76.9 67.4 53.9 86.3 79.9
rand crop 92.1 77.9 67.8 54.6 86.6 80.4
crop,color jit 92.0 77.3 67.6 54.8 86.4 80.1
crop, rand aug 91.6 76.6 67.1 54.3 86.1 80.1

3.4 Experimental Analysis of the Denoising Self-Distillation MAE

This section evaluates the feature extraction capability of the Denoising Self-
Distillation MAE self-supervised pre-trained encoder across CIFAR-10, CIFAR-100,
and STL-10 datasets. The assessment focuses on classification performance via full
fine-tuning and linear probing of the pre-trained encoder. Subsequent to this,
comparisons with alternative methodologies are presented. An ablation study on the

key components of the proposed method concludes this examination.

3.4.1 Implementation Details of the Denoising Self-Distillation MAE

In the experimental setup, several different ViT architectures were examined as
the backbone network, including: ViT-tiny - Consisting of 12 Transformer blocks,
each having a hidden layer dimension of 192. ViT-small - Also encompassing 12

Transformer blocks, but with each block boasting a hidden layer size of 384. ViT-

87

base - A more extensive architecture, comprising 12 Transformer blocks, each with a
hidden layer capacity of 768.

The architectural design of the models in question incorporates a pronounced
focus on the self-attention mechanism. The regression component integrates two
Transformer blocks harnessing self-attention. Conversely, the decoder module
comprises four self-attention blocks, culminating in a linear projection layer
dedicated to prediction output. Corresponding to prior experimentation with Mixup
features, CIFAR-10 and CIFAR-100 datasets were utilized, both consisting of images
with 32x32 pixel dimensions. To accommodate the ViT-Tiny and ViT-Small
architectures, images were segmented into a grid of 16x16, with each segment
measuring 2x2 pixels. For the STL-10 dataset, which presents images of 96x96 pixels,
a similar grid configuration of 16x16 was adopted, where each section spans 6x6
pixels to maintain consistency with the design standards of both ViT-Small and ViT-
Base architectures.

The pre-training parameters and configurations for the conducted experiments
are comprehensively tabulated in Table 3.7. For a visual appraisal, Figure 3.7 exhibits
denoising outcomes on the STL-10 dataset, with the sequence showcasing noisy
images, denoised results, and the original clean images. Due to limitations in
computational resources, the current experiments were conducted on datasets of
relatively reduced scale. This constraint, however, does not preclude the applicability
of the method to more expansive datasets. To accommodate larger datasets,
adjustments to the grid size and partitioning strategy would be necessitated,

corresponding to the actual dimensions of the images in question.

Figure 3.7 The visual denoising results of the STL-10 dataset

88

89

Table 3.7 Pre-training settings of the Denoising Self-Distillation MAE

Config CIFAR-10 or 100 STL-10
architecture ViT-T\ViT-S ViT-S\ViT-B
batch size 2048\2048 2048\1024
patch size 2 6
optimizer AdamW
optimizer momentum B1, B2 = 0.9,0.95
weight decay 0.05
learning rate schedule Cosine decay
base learning rate 1.5¢-4
warmup epochs 20
Epoch 500 500
EMAn cosine scheduler (0.96,0.99)

3.4.2 Evaluation

In the experimental evaluation phase of this study, pioneering works from prior
research were chosen as benchmarks to ensure strict comparability and fairness in the
comparative analysis. To ensure consistency in the backbone network used during
experimentation, the self-supervised learning method, MoCo v3 [71], based on the
VIT backbone network, was selected from the contrastive learning paradigm.
Concurrently, seminal works like BEIT [32], MAE [33], and Mask Feat [68] were
selected from the domain of Masked image modeling. It's noteworthy that both CAE
[72] and SAAE [73] employ a branched structure, demonstrating a predilection for
optimizing models within the feature domain. To be specific, SAAE's student branch
utilizes an encoder-decoder structure to reconstruct masked information from the
input image, whereas its teacher branch aims to produce latent representations of

masked tokens. The proposed method distinctively optimizes pixel-level

90

reconstruction in tandem with feature-level regression. A thorough comparison with
established methodologies facilitates a comprehensive assessment of the performance
and merits of this approach.

Table 3.8 presents the evaluation results of the pre-trained models based on the
ViT backbone on three datasets. Subtable (a) illustrates the evaluation outcomes of
the full fine-tuning experiments, while subtable (b) presents the results from the
linear probing experiments.

Table 3.8 Results of the Pre-training Evaluation Experiment

(a) full fine-tuning

Method pre- CIFAR-10 CIFAR-100 STL-10
trained ViT- ViT- ViT- ViT- ViT- ViT-
Epochs tiny small tiny small small base
scratch baseline - 73.88 79.86 51.55 56.17 77.98 82.41
BEiT 500 88.93 90.65 66.32 66.93 84.32 86.22
MoCo v3 500 88.91 90.88 66.17 67.39 84.61 87.07
MAE 500 88.77 90.26 65.93 66.51 85.63 86.38
MAE 1200 89.87 91.79 66.72 67.83 86.20 87.69
Mask feat 1200 90.12 91.75 66.83 67.86 86.23 87.85
CAE 300 89.93 91.56 66.84 67.83 86.08 87.76
SdAE 300 89.98 91.83 66.96 67.79 85.90 87.71
Ours 500 89.76 91.94 67.23 67.77 86.31 87.86
(b) linear probing
Method pre- CIFAR-10 CIFAR-100 STL-10
trained ViT- ViT- ViT- ViT- ViT- ViT-
Epochs tiny small tiny small small base
BEiT 500 47.68 56.73 27.89 33.78 42.21 48.57
MoCo v3 500 76.20 77.91 50.46 54.41 78.87 82.75
MAE 500 73.77 76.78 48.22 51.89 76.10 80.16
MAE 1200 75.87 77.53 50.19 54.08 77.96 82.36
Mask feat 1200 75.58 77.43 50.25 54.41 78.32 82.61
CAE 300 74.90 77.15 50.21 54.26 78.48 81.62
SdAE 300 75.17 76.86 50.01 53.71 78.30 82.11
Ours 500 75.53 76.98 50.17 53.84 78.56 82.79

Experimental results shows that the proposed method yielded enhanced

performance during full fine-tuning using the VIT-Small backbone on the CIFAR-10

91

and STL-10 datasets, registering an approximate boost of 0.1% in top-1 accuracy.
Moreover, when harnessing the VIT-tiny backbone for full fine-tuning on CIFAR-
100, a rise of about 0.3% in top-1 accuracy was observed. Similarly, a VIT-base
backbone recorded a nearly 0.1% increase in top-1 accuracy during full fine-tuning
on the STL-10 dataset. This experimental evidence robustly attests to the efficacy of
the introduced methodology, matching the performance benchmarks set by MAE and
Mask Feat. Remarkably, our technique achieved the performance levels of MAE
pretraining within a span of 500 epochs, contrasting with MAE's need for 1200
epochs, indicating a pronounced decrease in pretraining time. When compare with
SdAE, a performance improvement of 0.1% in top-1 precision was realized, further
substantiating the effectiveness of our self-distillation design and image denoising. In
full fine-tuning evaluation experiments across three datasets with diverse ViT
architectures, our method consistently outperformed the classical contrastive learning
approach, MoCo v3. However, in evaluations employing linear probing, the
contrastive learning-based MoCo v3 surpassed MIM-based methodologies. This
aligns with prior empirical evidence suggesting the inherent superiority of contrastive

learning over MIM-based approaches in the context of linear probing [33,72].
3.4.3 Ablation Study

The framework consists of a teacher encoder, student encoder, student decoder,
and regressor. Ablation studies investigated the impact of employing solely the L,
loss, which omits the teacher network and regressor, and the L, loss independently,

which excludes the denoising process performed by the student decoder. Performance

92

was compared in linear probing assessments across three datasets, with results
detailed in Table 3. Utilization of only the L,, loss resulted in a minor performance
drop of approximately 2% to 4% in the linear probing tests. Conversely, a reliance
solely on the L, led to a marked decrease in performance. These outcomes
substantiate the joint effectiveness of L, and L, losses in bolstering the feature
extraction capability of the pre-trained model across both pixel-level and high-
dimensional feature domains.

Table 3.9 presents ablation studies on the model framework. All models
employed the VIT-Small as their primary backbone and were pretrained for 300
epochs across CIFAR-10, CIFAR-100, and STL-10 datasets.

Table 3.9 Ablation studies on the model framework

Decoder regression decoder CIFAR-10 CIFAR-100 STL-10

\ X 74.20 49.74 75.35
X \ 68.93 44.51 61.83
\ \ 76.98 53.84 78.56

The study of the noise masking rate's effect on experimental results in MAE
shows that the masking rate in masked image modeling can reach 75%. The
proposed methodology amalgamates Masked Autoencoders (MAE) with knowledge
distillation, necessitating an elevated noise masking ratio for the denoising of
impaired images, as depicted in Figure 3.8. Experimental results from three different
datasets indicate that the best performance can be achieved when the noise masking
rate 1s between 90% and 95%. Employing an exceedingly low noise masking rate can
render the proxy task for the pre-trained model overly simplistic, resulting in

diminished feature extraction prowess.

93

The impact of the A parameter in Equation 2.15 on the feature extraction

capabilities of the

pre-trained model was examined by experimenting with a range of

A values. Figure 3.9 illustrates the fine-tuning outcomes of the pre-trained model.

Experimental results from three datasets indicate that the best fine-tuning

performance of the pre-trained model is achieved when the A value is set to 0.6.

92

91 +

Top-1 acc (fine tuning)

/.
—s— CIFAR-10 . \
/ -

8
I

Top-1 acc (fine tuning)
3 9
o [3)
1 1

2
(4]
|

& 8 8
(=) o N
| | |

Top-1 acc (fine tuning)

&
(=]
L

STL-10

I T T T T
80% 85% D% 95% 100%
Noise-masking ratio %

Figure 3.8 investigates the impact of the noise masking rate on experimental results.

94

92 o
—s— CIFAR-10

N~

87

Top-1 acc (fine tuning)

-~ CIFAR-100 e S

Top-1 acc (fine tuning)
3
1

STL-10

Top-1 acc (fine tuning)
&
!

83 T T T T T T T

Figure 3.8 investigates the impact of the A value on experimental results.

3.5 Conclusion of Chapter 3

In Chapter 3, comprehensive experiments were conducted to verify the two
proposed self-supervised learning algorithms - Mixup Feature and Denoising

Distillation Masked Autoencoder.

95

For Mixup Feature, the model was pretrained on the CIFAR-10, CIFAR-100,
and STL-10 datasets. Downstream evaluation involves linear probing and full fine-
tuning. Results showed that mixing traditional features like Sobel, HOG, LBP
improved performance compared to single features. The unnormalized combination
of features delivered the most optimal performance when set as targets. Ideally, a
masking ratio ranging from 40-60% is preferred. The mixup factor A of 0.2-0.3
yielded the best results for the HOG-Sobel mixup. This method matches or surpasses
MAE and is superior to contrastive learning.

For the Denoising Distillation Masked Autoencoder, the model adopted ViT as
the backbone network and was pretrained on the same three datasets. Removing
randomly added Gaussian noise blocks served as the pretext task. Full fine-tuning
and linear probing benchmark tests exhibited comparable performance to MAE and
MaskFeat within 500 epochs, faster than the 1600 epochs of MAE. This strategy
outperforms the seminal contrastive learning approach of MoCo v3. The ablation
study confirmed the combined effect of pixel reconstruction loss and feature
regression loss, demonstrating the effectiveness of the proposed framework. Optimal
results can be achieved with a 90-95% noise masking rate and a A value of 0.6 from
equation 2.15.

In conclusion, comprehensive experiments demonstrated the effectiveness of the
two proposed self-supervised learning algorithms on three different datasets
compared to existing methods. The results verified the innovation of advancing

masked image modeling techniques through mixed feature objectives and denoising

96

distillation MAE. Future work can evaluate extending these methods to larger
datasets.

Subsequent chapters will delve into the specific applications and experimental
evaluations of two prominent self-supervised learning algorithms within the realm of
medical image analysis. The potential of self-supervised learning is becoming
increasingly evident across various computer vision tasks, especially in scenarios
where data annotation is scarce or costly. The challenges of annotating medical
images, due to their specialized nature and sensitivity, underscore the significance of
self-supervised learning in this field. Empirical studies on these algorithms will be
conducted to validate their effectiveness and viability for real-world medical imaging
tasks. The MAE method will serve as a benchmark, facilitating a quantitative
comparison with self-supervised learning algorithms across various metrics.
Comprehensive insights regarding experimental design, dataset description, results

analysis, and further discussions will be provided in the ensuing chapter.

97

CHAPTER 4. APPLICATION OF SELF-SUPERVISED PRETRAINED

MODELS IN CT SCAN CLASSIFICATION

Obtaining data labels in the field of medical imaging is a challenging task,
Professional radiologists are required for accurate annotations [80]. The dataset of
medical images exhibits a significant imbalance, where positive samples are notably
fewer than negative samples [81]. Through self-supervised pre-training, models can
attain general feature extraction abilities even without labels, additionally, these pre-
trained models exhibit reduced sensitivity to dataset imbalances [82].

This chapter primarily details the application of self-supervised pre-trained
models for CT scan classification. CT (Computerized Tomography) scanning is
pivotal in medical imaging, diagnosing a range of diseases and symptoms. With the
development of self-supervised learning techniques, self-supervised pre-training can
learn useful representations from unlabeled CT scan data. This chapter delves into
harnessing self-supervised pre-trained models to derive significant features from CT
scans, enabling precise and efficient CT scan classification. The process of pre-
training using CT scan data and the subsequent fine-tuning and classification
experimental results are discussed. Additionally, this research examines the
performance and advantages of the proposed self-supervised pre-trained models in
comparison to traditional supervised methods for CT scan classification. Through
extensive experiments, this chapter emphasizes the potential of self-supervised pre-
trained models as a promising method to enhance CT scan analysis and improve

medical outcomes.

98

4.1 CT Scan Datasets

COVID-CTset [74] 1s a vast dataset of COVID-19 CT scans, comprising over
60,000 CT images. In our experiments, this dataset served as the pre-training
foundation during the self-supervised learning stage.

The COVID-CT-Dataset [75] is a concise dataset, featuring 397 COVID19-
negative samples and 349 COVID19-positive samples. This dataset is utilized for the
fine-tuning and classification tests of the pre-trained model.

The SARS-CoV-2 [76] CT scan dataset, hosted on the Kaggle platform,
comprises 2482 samples in total. The positive and negative samples in the dataset are
roughly balanced. tuning and classification experiments of the pre-trained model.
This dataset is similarly employed for the fine-tuning and classification trials of the
pre-trained model. It serves as a comparative experiment against the COVID-CT-

Dataset.

4.2 Self-Supervised Pre-Training on CT Scan Dataset

The COVID-CTset dataset serves as the training set for this phase of self-
supervised pre-training, without the use of labels. All images in the dataset are
uniformly cropped using RandomResizedCrop [77] to dimensions of 224x224,
incorporating the RandomHorizontalFlip [77] data augmentation technique.

Pre-training was conducted on three distinct self-supervised learning methods:
MAE [33], Mixup Feature [67], and Denoising Self-Distillation MAE [85]. Each of

the three methods employs the same backbone network, specifically the ViT-Small.

99

The patch size designated for segmenting the images is set at 14, with other
parameter configurations adhering to the experimental setup outlined in Chapter 3.
MAE focuses on the reconstruction of masked pixels and requires 1200 epochs for
training iterations. Mixup Feature aims to reconstruct the target feature maps of
masked images and undergoes 800 epochs for training iterations. Denoising Self-
Distillation MAE 1is designed to denoise random noise and is trained over 500 epochs.
Since MAE involves pixel-level reconstruction, it necessitates a greater number of

epochs for pre-training.

-

~'\,~;;
| A . i
e N
— ~ N

@

Masked Reconstructed Original Masked Reconstructed Original

Figure 4.1 Reconstruction of the COVID-CTset validation set images using MAE.

100

The quality of the reconstructed images or feature maps is evaluated using the
images from the validation set. As depicted in Figure 4.1, the MAE pre-trained
model demonstrates the quality of reconstructed images from the COVID-CTset
validation set after undergoing 1200 epochs of training. The masking rate of the

images are 75%.

Original Masked Mixup Reconstructed
image image Feature Feature

Figure 4.2 Reconstructed Features of the COVID-CTset validation set images using

Mixup Feature.

101

Figure 4.2 illustrates the feature map reconstruction outcomes achieved by the
Mixup Feature self-supervised pre-trained model on the COVID-CTset validation set.
The masking rate of the image is 60%, The target feature map is derived using the
HOG-Sobel Mixup Feature strategy applied to the original image, with a A setting of

0.3, for further details of A, refer to equation 2.1.

Noised image Original Denoised Noised image Original Denoised

Figure 4.3 Denoised images of the COVID-CTset validation set images using

Denoising Self-Distillation MAE.

102

Figure 4.3 illustrates the reconstruction outcomes of the Denoising Self-
Distillation MAE self-supervised pre-trained model on the COVID-CTset validation
set images, post 500 epochs of training. The pre-trained model has a noise masking
rate of 80%.

The models underwent pre-training on the COVID-CTset, and visualization
outcomes suggest that each can predict the overall anatomical structure within CT
Scan images, yet both MAE and Mixup Feature fall short in reconstructing the
intricate textures of lung tissue slices. This outcome is anticipated, given that MAE
perceives only 25% of the input image and endeavors to reconstruct the remaining 75%
during training, a feat even seasoned radiologists find daunting. Denoising Self-
Distillation MAE is adept at not only reconstructing the overall anatomical structure
but also capturing the detailed textures of lung tissue slices. This capability stems
from its structural design, which emphasizes both global information and local
information.

However, no concrete evidence suggests a positive correlation between
reconstruction capability and transfer learning performance. Conversely, original
autoencoders with a 0% mask ratio [78] undoubtedly outperform mask autoencoders
in image reconstruction, but the representations they produce are less effective in
downstream tasks than those from masked autoencoders [79]. Ultimately, it's worth
noting that the primary objective of self-supervised learning isn't the image
reconstruction task per se, but rather a proxy task within the realm of self-supervised
learning. Objective evaluation must be based on its generalization capability and

transferability in downstream tasks.

103

4.3 Fine-Tuning on CT Scan Dataset

To further assess the three self-supervised pre-trained models described in
section 4.2, two sets of downstream tasks were established. The self-supervised pre-
trained models were subject to Full Finetuning experiments on both the COVID-CT-
Dataset and the SARS-CoV-2 dataset. These datasets were segmented into training,
test, and validation sets at a split ratio of 4:1:1. Data samples were resized to 224*224
pixels, aligning with the input size of the pre-trained models. The dataset maintains a
balance between positive and negative samples.

Table 4.1 The Full Fine-tuning results on test set (%)

Model COVID-CT SARS-CoV-2

Acc F1 score AUC Acc F1 score AUC

ViT-scratch 87.46 87.70 91.57 90.33 90.40 94 .48
MAE(STL) 91.38 91.78 96.74 92.37 92.07 96.99
Mixup(STL) 9243 92.57 96.83 92.98 92.91 97.24
DMAE(STL) 90.32 90.81 95.39 91.88 91.18 96.76
DMAE(Med) 91.25 91.54 96.70 93.18 93.06 98.37
MAE(Med) 93.16 93.41 97.61 98.26 98.25 99.65
Mixup(Med) 93.01 93.26 97.33 98.08 98.13 99.49

During the Full Finetuning experiment, the model underwent training for 200
epochs. A comparative experiment was also conducted, where training occurred
directly on these two datasets without using pre-trained models (ViT-scratch). To
investigate the model's transfer learning capabilities, the pre-trained models from
experiments in sections 3.3 and 3.4 were utilized on the STL-10 dataset for Full Fine-
tuning. The datasets were resized to conform to the STL-10 sample dimensions of
96x96 pixels. The results of the Full Fine-tuning on these test sets are presented in

Table 4.1.

104

The table 4.1. presents the outcomes of each approach across the two test
datasets. "Acc" denotes accuracy, "F1 score" represents the harmonic mean of model
precision and recall [83], "AUC" stands for Area Under the Curve [84]. In the
Model’s column, "Med" signifies those pre-trained on the COVID-CTset. "STL"
designates models pre-trained on the STL-10 dataset. "scratch" refers to models
trained directly on the medical dataset.

Experimental results indicate that the three self-supervised pre-training methods
outperform direct training on both datasets, showcasing a noticeable enhancement.
On the COVID-CT dataset, using the MAE pre-training approach led to an
improvement of 5.7% in accuracy, 5.71% in F1 score, and 6.04% in AUC when
compared to the scratch training method. For COVID-CT dataset, the Mixup Feature
pre-training approach yielded a 5.55% increase in accuracy, a 5.56% enhancement in
F1 score, and a 5.76% rise in AUC, in comparison to the scratch training technique.
Using the DMAE pre-training approach on COVID-CT dataset resulted in an
enhancement of 3.79% in accuracy, 3.84% in F1 score, and 5.13% in AUC when set
against the scratch training protocol. For the SARS-COV-2 dataset, the MAE pre-
training method, when compared to the scratch training, showed an accuracy
improvement of 7.93%, an F1 score enhancement of 7.85%, and an AUC rise of
5.17%. On the SARS-COV-2 dataset, when juxtaposing the Mixup Feature pre-
training method with the scratch training, we observed an accuracy boost of 7.75%,
an F1 score increment of 7.73%, and an AUC elevation of 5.01%. For the SARS-

COV-2 dataset, when juxtaposing the DMAE pre-training method with the scratch

105

training, we observed an accuracy boost of 2.85%, an F1 score increment of 2.66%,

and an AUC elevation of 3.89%.

Receiver Operating Characteristic (ROC) Curve

1.0 A ,-07—
d
0.8 '
b
2
5 0.6 A
@
2
2
o
a.
2 J
E
0.4
= MAE(medical) ROC curve (AUC = 0.99)
0.2 1 - Mixup(medical) ROC curve (AUC = 0.99)
DMAE(medical) ROC curve (AUC = 0.98)
= Mixup(STL-10) ROC curve (AUC = 0.97)
MAE(STL-10) ROC curve (AUC = 0.96)
DMAE(STL-10) ROC curve (AUC = 0.96)
scratch ROC curve (AUC = 0.94)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 4.4 The AUC plot of the different training strategies on SARS-COV-2

This further underscores that leveraging self-supervised pre-training is a highly
effective method to boost model accuracy. The Mixup Feature (Med) pre-training
approach yielded results closely aligned with MAE (Med), and interestingly, the
Mixup Feature (STL) even marginally exceeded MAE (STL). This further
emphasizes the promising potential of the Mixup Feature method I introduced within
the medical image processing domain. DMAE's overall performance lags behind

Mixup Feature and MAE. Although DMAE's reconstructed target images excel in

106

section 4.2 over Mixup Feature and MAE, it doesn't necessarily imply superior

feature extraction capabilities than those methods.

Receiver Operating Characteristic (ROC) Curve

1.0 1 IJ_'—1=—
-
0.8
3z d
& 0.6 -I |
[
=z
= ’
o
a.
(7]}
=
=
0.4
- MAE(medical) ROC curve (area = 0.976)
0.2 1 - Mixup(medical) ROC curve (area = 0.973)
Mixup(STL-10) ROC curve (area = 0.968)
= MAE(STL-10) ROC curve (area = 0.967)
DMAE(medical) ROC curve (area = 0.967)
DMAE(STL-10) ROC curve (AUC = 0.95)
scratch ROC curve (area = 0.91)
0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate

Figure 4.5. The AUC plot of the different training strategies on COVID-CT

Figure 4.4 illustrates the AUC curves of seven training methods when applied to
the SARS-COV-2 test dataset, Figure 4.5 portrays the AUC curves of seven training
methods for the COVID-CT test dataset, both experimental outcomes consistently
highlight that MAE (Med) and Mixup (Med) excel in AUC performance relative to
the other strategies presented. Fine-tuning pre-trained models on medical image
datasets yields superior results compared to the STL-10 dataset. The considerable
differences between STL-10 data samples and medical image data samples account

for this. The Mixup feature, when pre-trained on STL-10, exhibits superior

107

performance over MAE in cross-domain imaging tasks, demonstrating the transfer

learning capability of the Mixup feature.

4.4 Investigating the Robustness of Self-Supervised Pre-Trained Models on

Imbalanced Datasets

In medical imaging, datasets frequently exhibit imbalances, often stemming
from factors like the rarity of specific diseases or challenges in data acquisition. Such
imbalances can potentially influence model training and its subsequent performance.
In this section, an experimental setup was designed specifically for imbalanced
datasets, with the objective to thoroughly evaluate the robustness and efficacy of self-
supervised pre-trained models in such contexts. This experimental design facilitates a
more comprehensive understanding of the potential value and limitations of models
in practical medical applications.

To more closely resemble real-world medical imaging scenarios, where the
number of positive samples (such as confirmed cases) is often much lower than
negative samples, the SARS-COV-2 dataset and COVID-CT dataset were used as
experimental bases. By integrating the two datasets, training sets were constructed
with varying imbalance ratios to mimic real-world data distributions. Four distinct
positive-to-negative sample ratios were configured: 1:1, 1:2, 1:4, and 1:8, as depicted
in Figure 4.6. This configuration was critical to enable a comprehensive evaluation of
the robustness of the self-supervised pre-trained models under diverse imbalanced

conditions.

108

SARS-CoV-2

1000 - [Negative

[Positive

800 -

600

400 A

200 +

11 2:1 4:1 8:1
imbalance ratio

(2)

COVID-CT

[Negative
800 A [Positive

700 A
600 H
500 A
400 ~
300 -
200 A

100 A

1:1 2:1 4:1 8:1
imbalance ratio

(b)
Figure 4.6. The training set is configured with imbalanced ratios. (a) details the

imbalance ratio settings for the SARS-COV-2 dataset, while (b) provides the

imbalance ratio settings for the COVID-CT dataset.

The investigation into the performance of self-supervised pre-trained models on

imbalanced datasets involved the creation of several imbalanced data scenarios,

109

illustrated in Figure 4.6. Full finetuning was executed for three models: Masked

Autoencoder (MAE), Mixup Feature, and Denoising Masked Autoencoder (DMAE).

100

95 1

90 1

Acc %

80 5

75 1

70

100

95 1

90 1

Acc %

80 5

75 1

70

ViT Encoder (Scratch)

85

—e— SARS-CoV-2

85

COVID-CT
~—
\\\‘\
~
\\\
\\\
\I\\
\\
N
\\
RS
NS
11 2:1 41 81
imbalance ratio
(a)
Mixup Feature (Med)
—a— SARS-CoV-2
e COVID-CT

11 2:1 41 81
imbalance ratio

(©)

Acc %

Acc %

100

95

90 -

85 -

80 4

100

95

90 -

85 -

80 4

MAE (Med)

—e— SARS-CoV-2
CovID-CT

imbalance ratio

41 81

DMAE (Med)
—o— SARS-CoV-2
COVID-CT
"\
\\\\o\\\
\\\\\\
\\\
\\\\

11 21
imbalance ratio

(d)

41 81

Figure 4.7. Experimental results under different imbalance ratios, the blue line

signifies the experimental results from the SARS-COV-2 dataset. the orange line

depicts the experimental results derived from the COVID-CT dataset. (a)ViT Encoder

Scratch, (b) MAE pre-trained on COVID-CTset, (c) Mixup Feature pre-trained on

COVID-CTset, (d) DMAE pre-trained on COVID-CTset.

110

Experiments were conducted on these pre-trained models on imbalanced
downstream task datasets to verify their robustness. For comparison, the ViT-
Encoder was also directly trained on the said imbalanced dataset.

The experimental findings indicate that models pre-trained via self-supervision
notably surpassed the direct use of ViT-Encoder in terms of robustness. Specifically,
as shown in Figure 4.7, with the increase in imbalance ratio, the performance of the
directly trained ViT-Encoder dropped sharply on two downstream task datasets, and
the decline was significant. In contrast, the three models pre-trained through self-
supervision showed a more stable decline in performance facing different imbalance
ratios, and the drop was relatively smaller. This observation implies that self-
supervised pretraining indeed provides models with a more robust foundation for
feature learning. In the ensuing fine-tuning phase, such a foundational learning aids
models in adeptly navigating the challenges presented by imbalanced data, leading to
more precise medical image analyses.

To deeply explore the performance differences between self-supervised pre-
training and supervised pre-training on imbalanced datasets. In comparison with
CNN models, our objective is to discern the effects of the two distinct pre-training
techniques on the experimental outcomes and to elucidate the observations made. In
this experiment, we selected three advanced CNN models for evaluation: EfficientNet
[86], ResNet [41], and VGG [87]. These three models are widely used in various
computer vision tasks and have excellent performance on many standard datasets

[88][89][90].

111

For comparative analysis, we adopted two different pre-training strategies for
each CNN model:
Models pre-trained on ImageNet [54]: These models underwent full supervised

pre-training on the large ImageNet dataset and were fine-tuned based on this for the

imbalanced dataset.

Resnet supervised pretrained Resnet
100 100
g —e— SARS-CoV-2 —o— SARS-CoV-2
« COVID-CT « COVID-CT
el S
N \\\\)
— e
90 90 s
~
\\'
® ®
v 8 v 8
3)
< <
80 5 80 4
754 75 1
70 70
11 2:1 41 81 11 21 41 81
imbalance ratio imbalance ratio
(a) (b)
100 Efficientnet supervised pretrained 100 Efficientnet
[—a— SARS-CoV-2 —a— SARS-CoV-2
s + COVID-CT 13 + COVID-CT
=L
95 \\ 95 <
=S
\\ e
90 \ 90 \\
® ®
Y 85 g 85
< <
80 5 80 4
75 1 75 1
70— 70
11 21 41 81 11 21 41 81

imbalance ratio

(©)

imbalance ratio

(d)

112

VGG supervised pretrained VGG
100 100
—o— SARS-CoV-2 —e— SARS-CoV-2
COVID-CT COVID-CT
‘\,
a5 \\\\ 95 .
~ N o
90 T 90 N—
\‘\\‘ \\\\
R R ~
o 8 o 85
I o
< <
80 4 80 1
754 754
70 70
X1 21 41 81 11 21 41 81
imbalance ratio imbalance ratio
(e) ®

Figure 4.8. Experimental results of CNN models on imbalanced datasets. The
blue line signifies the experimental results from the SARS-COV-2 dataset. The
orange line depicts the experimental results derived from the COVID-CT dataset. (a)
Pre-trained ResNet 121, (b) ResNet 121, (c) Pre-trained EfficientNet b0, (d)

EfficientNet b0, (e) Pre-trained VGG 16, (f) VGG 16.

Models trained from scratch: These models did not undergo any pre-training but
were directly trained under full supervision on the imbalanced dataset.

This experimental design is intended to elucidate the potential strengths and
weaknesses inherent to both self-supervised and fully supervised pre-training
approaches when managing imbalanced datasets.

Compared to traditional CNN architectures, the Vision Transformer (ViT), when
trained from scratch, experiences a more pronounced accuracy drop with highly
imbalanced data. The main reason for this performance decline is that ViT's design

philosophy emphasizes capturing global context information in images, showing

113

clear advantages in scenarios where global dependencies are strong and context
parsing is crucial [91]. However, capturing this global context comes at a cost. ViT
typically requires a large amount of training data to realize its maximum potential and
hopes to achieve equivalent or higher performance levels compared to classical CNN
frameworks [92].

Comparison of Figures 4.8 and 4.7 reveals that, with a data balance ratio of 1:1,
the accuracy of the CNN model pre-trained on ImageNet marginally surpasses that of
the self-supervised method examined in this study. The reason for this difference lies
in the vast disparity in training data volumes: due to computational constraints, the
self-supervised method in this paper was only pretrained on 60,000 medical images,
while in comparison, ImageNet's training set contains 1,281,167 images [54], a
massive difference in data scale. Encouragingly, when the data imbalance ratio
expands to 8:1, we find that the accuracy obtained by the self-supervised pretraining
method in this study surpasses that of the CNN models pretrained on ImageNet. This
finding further confirms that our self-supervised pre-training model can still
demonstrate satisfactory robustness and strong generalization capabilities when

dealing with highly imbalanced data scenarios.

4.5 Conclusion of Chapter 4

This chapter examined the application of self-supervised pre-trained models for
CT scan classification. Obtaining accurate labels for medical imaging data is

challenging due to the expertise required. Medical imaging datasets also often exhibit

114

significant class imbalance. The chapter explored how self-supervised pre-training
can learn representations from unlabeled CT scans to address these issues.

Three self-supervised learning methods - MAE, Mixup Feature, and Denoising
Self-Distillation MAE - were applied to pre-train on the unlabeled COVID-CTset
dataset. Reconstruction images on held-out data indicated the model captured global
anatomical structure but struggled with fine tissue textures. However, reconstruction
performance does not necessarily correlate with transfer learning ability.

The pre-trained models were fine-tuned on two smaller labeled datasets for
classification. All self-supervised methods outperformed direct training,
demonstrating enhanced performance through self-supervised pre-training. Mixup
Feature achieved results comparable to MAE, highlighting its potential in medical
domains.

To evaluate robustness under real-world class imbalances, models were tested
with varying positive and negative sample ratios. Self-supervised pre-training
stabilized performance as imbalance increased, whereas direct training showed
steeper declines. This suggests self-supervised learning provides a more robust
feature representation foundation.

Comparison to CNNs pre-trained on ImageNet revealed self-supervised learning
maintained higher accuracy even at extreme 8:1 imbalance. While supervised pre-
training performed slightly better with balanced data, self-supervised learning
exhibited stronger generalization to highly imbalanced scenarios.

In conclusion, this work demonstrated the promise of self-supervised pre-

training for enhancing CT scan analysis and robust medical image classification.

115

Self-supervised models achieved superior and more stable performance compared to
direct training, especially under realistic class imbalances. The Mixup Feature
method displayed transferability competitive with state-of-the-art MAE. Overall, self-
supervised learning represents a promising approach for medical imaging tasks

involving limited labeled data.

116

CONCLUSIONS

This dissertation delves into innovative methods of self-supervised learning

algorithms within visual representation learning. Furthermore, it investigates its

applications in the domain of medical image analysis. During the research process, a

series of academically valuable and practically applicable results were achieved.

1.

This research presents a comprehensive review of self-supervised learning
algorithms, systematically organizing them into four core -categories:
contrastive learning, masked image modeling, self-distillation, and canonical
correlation analysis. For each methodology, this study meticulously
elucidates its features and strengths, paving a theoretical foundation for

ensuing research and guiding the introduction of novel algorithms.

This dissertation presents two pioneering self-supervised learning algorithms
centered on masked image modeling, with an emphasis on enhancing the
efficacy of visual feature capture. The Mixup Feature strategy introduces an
innovative predictive task, targeting the reconstruction of a fusion of
traditional image features like Sobel, HOG, and LBP. This sets forth a
formidable challenge for the masked autoencoder. This approach not only
elevates the model's predictive complexity but also enriches the information
pool for visual representation. Conversely, the Denoising Self-Distillation
Masked Autoencoder method adeptly integrates self-distillation with the

masked autoencoder. The loss design takes into account both pixel-level

117

image restoration and feature-level regression, striking a balance between

detailed and high-level semantic information recovery.

3. Extensive experimental evaluations were conducted on the proposed self-
supervised learning algorithms, testing their performance across multiple
standard datasets. Overall, compared to the current state-of-the-art methods,
these two new algorithms demonstrated significant advantages on three
distinct datasets. Especially the Mixup Feature and the Denoising Self-
Distillation Masked Autoencoder, their performances underscored their
innovativeness in the self-supervised learning domain. For further research

on these two methods, their effects on larger datasets can be explored.

4. In the field of medical imaging, this paper particularly focuses on the
classification problem of CT scans with a lack of extensive labeled data.
Experimental results indicate that, compared to traditional methods, utilizing
self-supervised pre-training can significantly improve model classification
performance, especially in imbalanced data scenarios. Notably, Mixup
Feature achieved exceptional results comparable to MAE, further

emphasizing its tremendous potential in medical image classification.

In summation, this study, anchored by two innovative algorithms and
substantiated by empirical validations on both visual and medical imaging datasets,
has enriched the realm of self-supervised learning. Indeed, the proposed methods are
competitive with the state-of-the-art and showcase novel innovations. Evaluations

under realistic class imbalances have proven the robustness of self-supervised pre-

118

training for healthcare applications involving limited labeled data. Overall, this paper
highlights the prospects of self-supervised learning as an effective approach for
medical image classification, offering new methods and models that provide valuable
insights and guidance for future computer vision research. Future work can explore
extending these methods to larger datasets and a wider range of medical imaging

modalities.

119

REFERENCES

. Balestriero, R., Ibrahim, M., Sobal, V., Morcos, A., Shekhar, S., Goldstein, T.,

Bordes, F., Bardes, A., Mialon, G., Tian, Y. and Schwarzschild, A., 2023. A
cookbook of self-supervised learning. arXiv preprint arXiv:2304.12210.

. Liu, Y., Han, T., Ma, S., Zhang, J., Yang, Y., Tian, J., He, H., Li, A., He, M., Liu,
Z. and Wu, Z., 2023. Summary of chatgpt/gpt-4 research and perspective towards
the future of large language models. arXiv preprint arXiv:2304.01852.
Chowdhery, Aakanksha, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav
Mishra, Adam Roberts, Paul Barham et al. "Palm: Scaling language modeling
with pathways." arXiv preprint arXiv:2204.02311 (2022).

Goyal, Priya, Mathilde Caron, Benjamin Lefaudeux, Min Xu, Pengchao Wang,
Vivek Pai, Mannat Singh et al. "Self-supervised pretraining of visual features in

the wild." arXiv preprint arXiv:2103.01988 (2021).

. Kirillov, A., Mintun, E., Ravi, N., Mao, H., Rolland, C., Gustafson, L., Xiao, T.,

Whitehead, S., Berg, A.C., Lo, W.Y. and Dollar, P., 2023. Segment anything.
arXiv preprint arXiv:2304.02643.

. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X,
Unterthiner, T., ... & Houlsby, N. (2020). An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

. Zhang, R., Isola, P. and Efros, A.A., 2016. Colorful image colorization. In

Computer Vision—-ECCV 2016: 14th European Conference, Amsterdam, The

10.

11.

12.

13.

120

Netherlands, October 11-14, 2016, Proceedings, Part III 14 (pp. 649-666).
Springer International Publishing.

Larsson, G., Maire, M. and Shakhnarovich, G., 2016. Learning representations for
automatic colorization. In Computer Vision—-ECCV 2016: 14th European
Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part IV 14 (pp. 577-593). Springer International Publishing.

Pathak, D., Krahenbuhl, P., Donahue, J., Darrell, T. and Efros, A.A., 2016.
Context encoders: Feature learning by inpainting. In Proceedings of the IEEE
conference on computer vision and pattern recognition (pp. 2536-2544).

Gidaris, S., Singh, P. and Komodakis, N., 2018. Unsupervised representation
learning by predicting image rotations. arXiv preprint arXiv:1803.07728.
Doersch, C., Gupta, A. and Efros, A.A., 2015. Unsupervised visual representation
learning by context prediction. In Proceedings of the IEEE international
conference on computer vision (pp. 1422-1430).

Caron, Mathilde, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. "Deep
clustering for unsupervised learning of visual features." In Proceedings of the
European conference on computer vision (ECCV), pp. 132-149. 2018.

Vincent, Pascal, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
"Extracting and composing robust features with denoising autoencoders." In
Proceedings of the 25th international conference on Machine learning, pp. 1096-

1103. 2008.

14.

15.

16.

17.

18.

19.

20.

121

Wang, W., Arora, R., Livescu, K. and Bilmes, J., 2015, June. On deep multi-view
representation learning. In International conference on machine learning (pp.
1083-1092). PMLR.

Zhang, Richard, Phillip Isola, and Alexei A. Efros. "Split-brain autoencoders:
Unsupervised learning by cross-channel prediction." In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 1058-1067. 2017.
Goodfellow, Ian, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. "Generative
adversarial nets." Advances in neural information processing systems 27 (2014).
Salimans, Tim, lan Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford,
and Xi Chen. "Improved techniques for training gans." Advances in neural
information processing systems 29 (2016).

Bachman, Philip, R. Devon Hjelm, and William Buchwalter. "Learning
representations by maximizing mutual information across views." Advances in
neural information processing systems 32 (2019).

Bromley, J., Guyon, 1., LeCun, Y., Sickinger, E. and Shah, R., 1993. Signature
verification using a" siamese" time delay neural network. Advances in neural
information processing systems, 6.

Hadsell, R., Chopra, S. and LeCun, Y., 2006, June. Dimensionality reduction by
learning an invariant mapping. In 2006 IEEE computer society conference on
computer vision and pattern recognition (CVPR'06) (Vol. 2, pp. 1735-1742).

IEEE.

21.

22.

23.

24.

25.

26.

27.

28.

122

Weinberger, Kilian Q., and Lawrence K. Saul. "Distance metric learning for large
margin nearest neighbor classification." Journal of machine learning research 10,
no. 2 (2009).

Sohn, Kihyuk. "Improved deep metric learning with multi-class n-pair loss
objective." Advances in neural information processing systems 29 (2016).

Oord, A.V.D., Li, Y. and Vinyals, O., 2018. Representation learning with
contrastive predictive coding. arXiv preprint arXiv:1807.03748.

Henaff, O., 2020, November. Data-efficient image recognition with contrastive
predictive coding. In International conference on machine learning (pp. 4182-
4192). PMLR.

Oh Song, H., Xiang, Y., Jegelka, S. and Savarese, S., 2016. Deep metric learning
via lifted structured feature embedding. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 4004-4012).

Ke Ji Meng Shou. " Self-Supervised Learning super detailed interpretation (2):

SimCLR series" ZhiHu, 2021.06.17, https://zhuanlan.zhihu.com/p/378953015.

Chen, Ting, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. "A
simple framework for contrastive learning of visual representations." In
International conference on machine learning, pp. 1597-1607. PMLR, 2020.

Nair, Vinod, and Geoffrey E. Hinton. "Rectified linear units improve restricted
boltzmann machines." In Proceedings of the 27th international conference on

machine learning (ICML-10), pp. 807-814. 2010.

29.

30.

31.

32.

33.

34.

35.

123

Wu, Z., Xiong, Y., Yu, S. X., & Lin, D. (2018). Unsupervised feature learning via
non-parametric instance discrimination. In Proceedings of the IEEE conference
on computer vision and pattern recognition (pp. 3733-3742).

He, K., Fan, H., Wu, Y., Xie, S. and Girshick, R., 2020. Momentum contrast for
unsupervised visual representation learning. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition (pp. 9729-9738).

Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint
arXiv:1810.04805.

Bao, Hangbo, Li Dong, Songhao Piao, and Furu Wei. "Beit: Bert pre-training of
image transformers." arXiv preprint arXiv:2106.08254 (2021).

He, Kaiming, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross
Girshick. "Masked autoencoders are scalable vision learners." In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 16000-
16009. 2022.

Xie, Zhenda, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao,
Qi Dai, and Han Hu. "Simmim: A simple framework for masked image
modeling." In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 9653-9663. 2022.

Oquab, Maxime, et al. "Dinov2: Learning robust visual features without

supervision." arXiv preprint arXiv:2304.07193 (2023).

36.

37.

38.

39.

40.

41.

42.

43.

124

Woo, Sanghyun, et al. "Convnext v2: Co-designing and scaling convnets with
masked autoencoders." Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2023.

Chang, Huiwen, et al. "Muse: Text-to-image generation via masked generative
transformers." arXiv preprint arXiv:2301.00704 (2023).

Grill, Jean-Bastien, et al. "Bootstrap your own latent-a new approach to self-
supervised learning." Advances in neural information processing systems 33
(2020): 21271-21284.

Chen, Xinlei, and Kaiming He. "Exploring simple siamese representation
learning." Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition. 2021.

Caron, Mathilde, et al. "Emerging properties in self-supervised vision
transformers." Proceedings of the IEEE/CVF international conference on
computer vision. 2021.

He, Kaiming, et al. "Deep residual learning for image recognition." Proceedings
of the IEEE conference on computer vision and pattern recognition. 2016.

Zhou, Jinghao, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and
Tao Kong. "ibot: Image bert pre-training with online tokenizer." arXiv preprint
arXiv:2111.07832 (2021).

Oquab, Maxime, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec,
Vasil Khalidov, Pierre Fernandez et al. "Dinov2: Learning robust visual features

without supervision." arXiv preprint arXiv:2304.07193 (2023).

44.

45.

46.

47.

48.

49.

50.

125

Bardes, Adrien, Jean Ponce, and Yann LeCun. "Vicreg: Variance-invariance-
covariance regularization for self-supervised learning." arXiv preprint
arXiv:2105.04906 (2021).

Zbontar, Jure, Li Jing, Ishan Misra, Yann LeCun, and Stéphane Deny. "Barlow
twins: Self-supervised learning via redundancy reduction." In International
Conference on Machine Learning, pp. 12310-12320. PMLR, 2021.

Caron, M., Misra, 1., Mairal, J., Goyal, P., Bojanowski, P. and Joulin, A., 2020.
Unsupervised learning of visual features by contrasting cluster assignments.
Advances in neural information processing systems, 33, pp.9912-9924.

Ermolov, Aleksandr, Aliaksandr Siarohin, Enver Sangineto, and Nicu Sebe.
"Whitening for self-supervised representation learning." In International
Conference on Machine Learning, pp. 3015-3024. PMLR, 2021.

N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection,"
2005 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition (CVPR'05), San Diego, CA, USA, 2005, pp. 886-893 vol. 1, doi:
10.1109/CVPR.2005.177.

T. Ahonen, A. Hadid and M. Pietikainen, "Face Description with Local Binary
Patterns: Application to Face Recognition," in IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 28, no. 12, pp. 2037-2041, Dec. 2006, doi:
10.1109/TPAMI.2006.244.

N. Kanopoulos, N. Vasanthavada and R. L. Baker, "Design of an image edge
detection filter using the Sobel operator," in IEEE Journal of Solid-State Circuits,

vol. 23, no. 2, pp. 358-367, April 1988, doi: 10.1109/4.996.

51.

52.

53.

54.

55.

56.

57.

58.

126

Ahonen, T., Hadid, A. and Pietikinen, M. (2006) Face Description with Local
Binary Patterns: Application to Face Recogniton. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 28, 2037-2041.

Ojala, T., Pietikinen, M. and Menp, T. (2002) Multiresolution Gray Scale and
Rotation Invariant Texture Classification with Local Binary Patterns. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 24, 971-998.

R. C. Gonzalez; R. E. Woods, Digital Image Processing, Prentice Hall, Upper
Saddle River, NJ., 2002. ISBN 013168728X.

J. Deng, W. Dong, R. Socher, L. -J. Li, Kai Li and Li Fei-Fei, "ImageNet: A
large-scale hierarchical image database," 2009 IEEE Conference on Computer
Vision and Pattern Recognition, Miami, FL, USA, 2009, pp. 248-255, doi:
10.1109/CVPR.2009.5206848.

Asano, Y. M., Rupprecht, C., Zisserman, A., & Vedaldi, A. (2021). Pass: An
imagenet replacement for self-supervised pretraining without humans. arXiv
preprint arXiv:2109.13228.

R. C. Gonzalez and R. E. Woods, Digital Image Processing. Upper Saddle River,
NJ, USA: Prentice-Hall, 2002.

A. Krizhevsky, ‘‘Learning multiple layers of features from tiny images,”” Tech.
Rep., 2009.

T. Cover and P. Hart, "Nearest neighbor pattern classification," in IEEE
Transactions on Information Theory, vol. 13, no. 1, pp. 21-27, January 1967, doi:

10.1109/TIT.1967.1053964.

59.

60.

61.

62.

63.

64.

65.

606.

127

Bordes, F., Balestriero, R. and Vincent, P., 2023. Towards Democratizing Joint-
Embedding Self-Supervised Learning. arXiv preprint arXiv:2303.01986.

Dong, Xiaoyi, Jianmin Bao, Ting Zhang, Dongdong Chen, Weiming Zhang, Lu
Yuan, Dong Chen, Fang Wen, Nenghai Yu, and Baining Guo. "Peco: Perceptual
codebook for bert pre-training of vision transformers." In Proceedings of the
AAALI Conference on Artificial Intelligence, vol. 37, no. 1, pp. 552-560. 2023.
Wei, Y., Hu, H., Xie, Z., Zhang, Z., Cao, Y., Bao, J., Chen, D. and Guo, B., 2022.
Contrastive learning rivals masked image modeling in fine-tuning via feature
distillation. arXiv preprint arXiv:2205.14141.

Bordes, Florian, Randall Balestriero, and Pascal Vincent. "High fidelity
visualization of what your self-supervised representation knows about." arXiv
preprint arXiv:2112.09164 (2021).

I. Loshchilov and F. Hutter, ‘‘Decoupled weight decay regularization,”” 2017,

arXiv:1711.05101.

I. Loshchilov and F. Hutter, ‘““SGDR: Stochastic gradient descent with warm

restarts,”” 2016, arXiv:1608.03983.

P. Goyal, P. Dollar, R. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola, A.
Tulloch, Y. Jia, and K. He, ‘‘Accurate, large minibatch SGD: Training ImageNet
in 1 hour,”” 2017, arXiv:1706.02677.

Ma, Jerry, and Denis Yarats. "On the adequacy of untuned warmup for adaptive

optimization." In Proceedings of the AAAI Conference on Artificial Intelligence,

vol. 35, no. 10, pp. 8828-8836. 2021.

67.

68.

69.

70.

71.

72.

73.

128

J. Xu and S. Stirenko, "Mixup Feature: A Pretext Task Self-Supervised Learning
Method for Enhanced Visual Feature Learning," in IEEE Access, vol. 11, pp.
82400-82409, 2023, doi: 10.1109/ACCESS.2023.3301561.

Wei, Chen, Haoqi Fan, Saining Xie, Chao-Yuan Wu, Alan Yuille, and Christoph
Feichtenhofer. "Masked feature prediction for self-supervised visual pre-
training." In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 14668-14678. 2022.

K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun.
2016, pp. 770-778.

E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, ‘‘RandAugment: Practical
automated data augmentation with a reduced search space,”” in Proc. IEEE/CVF
Conf. Comput. Vis. Pattern Recognit. Workshops (CVPRW), Jun. 2020, pp.
3008-3017.

Fan, Haoqi, Bo Xiong, Karttikeya Mangalam, Yanghao Li, Zhicheng Yan,
Jitendra Malik, and Christoph Feichtenhofer. "Multiscale vision transformers." In
Proceedings of the IEEE/CVF international conference on computer vision, pp.
6824-6835.

Chen, X., Ding, M., Wang, X., Xin, Y., Mo, S., Wang, Y., ... & Wang, J. (2022).
Context autoencoder for self-supervised representation learning. arXiv preprint

arX1v:2202.03026.

Chen, Yabo, Yuchen Liu, Dongsheng Jiang, Xiaopeng Zhang, Wenrui Dai,

Hongkai Xiong, and Qi Tian. "Sdae: Self-distillated masked autoencoder." In

74.

75.

76.

7.

78.

79.

129

European Conference on Computer Vision, pp. 108-124. Cham: Springer Nature

Switzerland, 2022.

Nguyen, D., Kay, F., Tan, J., Yan, Y., Ng, Y. S., Iyengar, P., ... & Jiang, S. (2021).
Deep learning—based COVID-19 pneumonia classification using chest CT images:

model generalizability. Frontiers in Artificial Intelligence, 4.

Zhao J, Zhang Y, He X, Xie P. Covid-ct-dataset: a ct scan dataset about covid-19.

arXiv preprint arXiv:2003.13865. 2020 Jun;490.

Angelov, Plamen, and Eduardo Almeida Soares. "SARS-CoV-2 CT-scan dataset:
A large dataset of real patients CT scans for SARS-CoV-2

1dentification." MedRxiv (2020).

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., ... &
Chintala, S. (2019). PyTorch: An Imperative Style, High-Performance Deep
Learning Library. In Advances in Neural Information Processing Systems 32 (pp.

8024-8035).

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the dimensionality of

data with neural networks. science, 313(5786), 504-507.

Zhou, Zongwei, et al. "Models genesis: Generic autodidactic models for 3d
medical image analysis." Medical Image Computing and Computer Assisted
Intervention—-MICCAI 2019: 22nd International Conference, Shenzhen, China,
October 13—-17, 2019, Proceedings, Part IV 22. Springer International Publishing,

2019.

80.

81.

82.

83.

84.

85.

86.

130

Liu, Fengbei, Yu Tian, Filipe R. Cordeiro, Vasileios Belagiannis, Ian Reid, and
Gustavo Carneiro. "Self-supervised mean teacher for semi-supervised chest x-ray
classification." In International Workshop on Machine Learning in Medical

Imaging, pp. 426-436. Cham: Springer International Publishing, 2021.

Xu, Jiashu. "A review of self-supervised learning methods in the field of medical
image analysis." International Journal of Image, Graphics and Signal Processing

(JIGSP) 13, no. 4 (2021): 33-46.

Liu, Hong, Jeff Z. HaoChen, Adrien Gaidon, and Tengyu Ma. "Self-supervised
learning is more robust to dataset imbalance." arXiv preprint arXiv:2110.05025

(2021).

Cyril, Goutte., Eric, Gaussier. (2005). A probabilistic interpretation of precision,

recall and F -score, with implication for evaluation.

C. X. Ling, J. Huang, and H. Zhang, "AUC: A Statistically Consistent and More
Discriminating Measure than Accuracy," in Proceedings of the 18th International

Joint Conference on Artificial Intelligence, Acapulco, Mexico, 2003, pp. 519-524.

Jiashu Xu, Sergii Stirenko, "Denoising Self-Distillation Masked Autoencoder for
Self-Supervised Learning", International Journal of Image, Graphics and Signal

Processing (IJIGSP), Vol.15, No.5, pp. 29-38, 2023.

Tan, Mingxing, and Quoc Le. "Efficientnet: Rethinking model scaling for
convolutional neural networks." In International conference on machine learning,

pp. 6105-6114. PMLR, 2019.

87.

88.

89.

90.

91.

92.

131

Simonyan, Karen, and Andrew Zisserman. "Very deep convolutional networks

for large-scale image recognition." arXiv preprint arXiv:1409.1556 (2014).

Marques, Gongalo, Deevyankar Agarwal, and Isabel De la Torre Diez.
"Automated medical diagnosis of COVID-19 through EfficientNet convolutional

neural network." Applied soft computing 96 (2020): 106691.

Yang, Wei, Huijuan Zhang, Jian Yang, Jiasong Wu, Xiangrui Yin, Yang Chen,
Huazhong Shu et al. "Improving low-dose CT image using residual convolutional

network." Ieee Access 5 (2017): 24698-24705.

Tan, Wenjun, Pan Liu, Xiaoshuo Li, Yao Liu, Qinghua Zhou, Chao Chen,
Zhaoxuan Gong, Xiaoxia Yin, and Yanchun Zhang. "Classification of COVID-19
pneumonia from chest CT images based on reconstructed super-resolution images

and VGG neural network." Health Information Science and Systems 9 (2021): 1-

12.

Zhou, Hong-Yu, Chixiang Lu, Sibei Yang, and Yizhou Yu. "Convnets vs.
transformers: Whose visual representations are more transferable?." In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp.

2230-2238. 2021.

Bai, Yutong, Jieru Mei, Alan L. Yuille, and Cihang Xie. "Are transformers more
robust than cnns?." Advances in neural information processing systems 34 (2021):

26831-26843.

132

93. Wu, Chenfei, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and
Nan Duan. "Visual chatgpt: Talking, drawing and editing with visual foundation

models." arXiv preprint arXiv:2303.04671 (2023).

94. Liu, Yen-Cheng, Chih-Yao Ma, Zijian He, Chia-Wen Kuo, Kan Chen, Peizhao
Zhang, Bichen Wu, Zsolt Kira, and Peter Vajda. "Unbiased teacher for semi-

supervised object detection." arXiv preprint arXiv:2102.09480 (2021).

133

APPENDIX A

Part of the program code

Chapter 3 Experimental Part Code
Mixup Model.py

import torch

import timm

import numpy as np

from skimage.feature import hog

from einops import repeat, rearrange

from einops.layers.torch import Rearrange

from timm.models.layers import trunc_normal_
from timm.models.vision_transformer import Block

import torch.nn.functional as F

def random_indexes(size : int):
forward_indexes = np.arange(size)
np.random.shuffle(forward_indexes)
backward_indexes = np.argsort(forward_indexes)

return forward_indexes, backward_indexes

def take_indexes(sequences, indexes):

return torch.gather(sequences, 0, repeat(indexes, 't b —> t b c¢', c=sequences.shape[-1]))

class PatchShuffle(torch.nn.Module):
def __init_ (self, ratio) —> None:
super().__init_ ()

self.ratio = ratio

def forward(self, patches : torch.Tensor):
T, B, C = patches.shape
remain_T = int(T % (1 - self.ratio))

indexes = [random_indexes(T) for _ in range(B)]

forward_indexes = torch.as_tensor(np.stack([i[@] for i in indexes], axis=-1),
dtype=torch.long).to(patches.device)
backward_indexes = torch.as_tensor(np.stack([i[1] for i in indexes], axis=-1),

dtype=torch.long).to(patches.device)

patches = take_indexes(patches, forward_indexes)

patches = patches[:remain_T]

return patches, forward_indexes, backward_indexes

class MAE_Encoder(torch.nn.Module):

def __init__ (self,

image_size=32,
patch_size=2,
emb_dim=192,
num_layer=12,
num_head=3,
mask_ratio=0.55,

) —> None:

super().__init_ ()

self.cls_token = torch.nn.Parameter(torch.zeros(1, 1, emb_dim))

134

self.pos_embedding = torch.nn.Parameter(torch.zeros((image_size // patch_size) *x 2, 1,

emb_dim))

self.shuffle = PatchShuffle(mask_ratio)

self.patchify = torch.nn.Conv2d(3, emb_dim, patch_size, patch_size)

self.transformer = torch.nn.Sequential(*[Block(emb_dim, num_head) for _

self.layer_norm = torch.nn.LayerNorm(emb_dim)

self.init_weight()

def init_weight(self):

trunc_normal_(self.cls_token, std=.02)

trunc_normal_(self.pos_embedding, std=.02)

def forward(self, img):

patches
patches

patches

patches,

patches
patches
features

features

self.patchify(img)

rearrange(patches, 'b c hw —> (h w) b c")

patches + self.pos_embedding

forward_indexes, backward_indexes = self.shuffle(patches)

in range(num_layer)])

torch.cat([self.cls_token.expand(-1, patches.shape[l], -1), patches], dim=0)

rearrange(patches, 't b c -=> b t c')

= self.layer_norm(self.transformer(patches))

= rearrange(features,

'btc-—>tbc")

return features, backward_indexes

class MAE_Decoder(torch.nn.Module):

def __init__ (self,

image_size=32,

135

patch_size=2,
emb_dim=192,
num_layer=4,
num_head=3,

) —> None:

super().__init_ ()

self.mask_token = torch.nn.Parameter(torch.zeros(1, 1, emb_dim))

self.pos_

emb_dim))

self.tran

self.head

self.patc
p2=patch_size, h=

embedding = torch.nn.Parameter(torch.zeros((image_size // patch_size) *x 2 + 1, 1,

sformer = torch.nn.Sequential(x[Block(emb_dim, num_head) for _ in range(num_layer)])

= torch.nn.Linear(emb_dim, 1 *x patch_size %x 2)
h2img = Rearrange('(h w) b (c pl p2) => b ¢ (h pl) (w p2)', pl=patch_size,

image_size//patch_size)

self.init_weight()

def init_weig
trunc_nor

trunc_nor

def forward(s

T = featu

backward_
backward_indexes
features
features.shape[0]
features

features

features
features
features

features

patches =
mask = to
mask[T:]

mask = ta
img = sel

mask = se

return im

ht(self):
mal_(self.mask_token, std=.02)
mal_(self.pos_embedding, std=.02)

elf, features, backward_indexes):

res.shape[0]

indexes = torch.cat([torch.zeros(1, backward_indexes.shape[1l]).to(backward_indexes),
+ 1], dim=0)

= torch.cat([features, self.mask_token.expand(backward_indexes.shape[0] -

, features.shape[l]l, -1)1, dim=0)

= take_indexes(features, backward_indexes)

= features + self.pos_embedding

= rearrange(features, 't b c —> b t c')
= self.transformer(features)
= rearrange(features, 'b t ¢ => t b c')

= features[1:] # remove global feature

self.head(features)
rch.zeros_like(patches)
=1

ke_indexes(mask, backward_indexes[1:] - 1)
f.patch2img(patches)

1f.patch2img(mask)

g, mask

136

class MAE_ViT(torch.nn.Module):
def __init__ (self,

image_size=32,
patch_size=2,
emb_dim=384,
encoder_layer=12,
encoder_head=8,
decoder_layer=4,
decoder_head=8,
mask_ratio=0.55,
) —> None:

super().__init_ ()

self.encoder = MAE_Encoder(image_size, patch_size, emb_dim, encoder_layer, encoder_head,
mask_ratio)

self.decoder = MAE_Decoder(image_size, patch_size, emb_dim, decoder_layer, decoder_head)

def forward(self, img):
features, backward_indexes = self.encoder(img)
predicted_img, mask = self.decoder(features, backward_indexes)

return predicted_img, mask

class ViT_Classifier(torch.nn.Module):
def __init_ (self, encoder : MAE_Encoder, num_classes=10) —> None:

super().__init_ ()
self.cls_token = encoder.cls_token
self.pos_embedding = encoder.pos_embedding
self.patchify = encoder.patchify
self.transformer = encoder.transformer
self.layer_norm = encoder.layer_norm

self.head = torch.nn.Linear(self.pos_embedding.shape[-1], num_classes)

def forward(self, img):
patches = self.patchify(img)
patches = rearrange(patches, 'b c hw —> (h w) b c")
patches = patches + self.pos_embedding
patches = torch.cat([self.cls_token.expand(-1, patches.shapel[l], -1), patches], dim=0)
patches = rearrange(patches, 't b c -=> b t c')
features = self.layer_norm(self.transformer(patches))
features = rearrange(features, 'b t ¢ => t b c')
logits = self.head(features[0])

return logits

def calculate_hog(batch_images):

hog_images = []

137

for image in batch_images:
hog_feature,hog_image= hog(image.to('cpu"), orientations=9, pixels_per_cell=(8, 8),
cells_per_block=(4, 4), visualize=True)
hog_images.append(hog_image)

return torch.tensor(np.array(hog_images))

def mixup_sobel_hog(imgs,mixup=True,lamda = 0):
EXSobelBRZ
sobel_kernel_x = torch.Tensor([[1, @, -1]1, [2, 0, -2], [1, @, -1]]).unsqueeze(@).unsqueeze(0)
sobel_kernel_y = torch.Tensor([[1, 2, 1], [0, @0, @], [-1, -2, -1]]1).unsqueeze(@).unsqueeze(0)
BEGEIEE R D IRER G

imgs_gray = 0.299 x imgs[:, @, :, :] + 0.587 % imgs[:, 1, :, :] + 0.114 % imgs[:, 2, :, :]

imgs_gray_2 = imgs.permute(9,2,3,1)

imgs_gray_2 = 0.299 x imgs_gray_2[:, :, :, 0] + 0.587 x imgs_gray_2[:, :, :, 1] + 0.114 %
imgs_gray_2[:, :, :, 2]

hog_images = calculate_hog(imgs_gray_2)

hog_images = torch.unsqueeze(hog_images,1)

BikERGHITEREE, RRxMyTTE EHH%EE

imgs_gray = imgs_gray.unsqueeze(1)

sobel_kernel_x = sobel_kernel_x.to(imgs_gray.device)

sobel_kernel_y = sobel_kernel_y.to(imgs_gray.device)

edge_x = F.conv2d(imgs_gray, sobel_kernel_x, padding=1)

edge_y = F.conv2d(imgs_gray, sobel_kernel_y, padding=1)

IHELSRE

edge_strength = torch.sqrt(torch.pow(edge_x, 2) + torch.pow(edge_y, 2))

#X N GREHLTIF— L
edge_strength /= edge_strength.max()

if mixup:

mixup_feature = lamdaxedge_strength + (1-lamda)xhog_images.to(imgs_gray.device)
else:

mixup_feature = edge_strength + hog_images.to(imgs_gray.device)

return mixup_feature

if __name__ == '__main__"':
shuffle = PatchShuffle(@.75)
a = torch.rand(16, 2, 10)
b, forward_indexes, backward_indexes = shuffle(a)
img = torch.rand(4, 3, 32, 32)
sobel_img = mixup_sobel_hog(img)
print("mixup shape",sobel_img.shape)

encoder = MAE_Encoder()

138

decoder = MAE_Decoder()

features, backward_indexes = encoder(img)

print(forward_indexes.shape)

predicted_img, mask = decoder(features, backward_indexes)

print(predicted_img.shape)

#loss = torch.mean((predicted_img - sobel_img) ** 2 * mask) / 0.75

loss = torch.mean((predicted_img — sobel_img) *x 2)

print(loss)

Mixup pretrained.py

import
import
import
import

import

0s
argparse
math
torch

torchvision

from torch.utils.tensorboard import SummaryWriter

from torchvision.transforms import ToTensor, Compose, Normalize

from tqdm import tqgdm

from torchvision import utils as vutils

import

dataset_process

from model import x*

from utils import setup_seed

if __name__ == '__main__"':

parser = argparse.ArgumentParser()

parser.add_argument('--seed', type=int, default=30)

parser.add_argument('--patch_size', type=int, default=2)

parser.add_argument('--batch_size', type=int, default=1024)

parser.add_argument('--max_device_batch_size', type=int, default=128)

parser.add_argument('--base_learning_rate', type=float, default=1.5e-4)

parser.add_argument('--weight_decay', type=float, default=0.05)

parser.add_argument('--mask_ratio', type=float, default=0.65)

parser.add_argument('--warmup_epoch', type=int, default=50)

parser.add_argument('--model_path', type=str, default='")

parser.add_argument('--save_path', type=str, default='")

parser.add_argument('--data_name', type=str, default='cifarle')

parser.add_argument('--image_size', type=int, default=32)

parser.add_argument('—-lamda', type=float, default=0.5)

(
(
(
(
(
(
(
parser.add_argument('--total_epoch', type=int, default=1200)
(
(
(
(
(
(
(

parser.add_argument('--vit_type', type=str, default="vit-tiny")

args = parser.parse_args()

setup_seed(args.seed)

batch_size = args.batch_size

load_batch_size = min(args.max_device_batch_size, batch_size)

139

assert batch_size % load_batch_size ==
steps_per_update = batch_size // load_batch_size
if args.data_name == 'cifarlQ':
train_dataset = torchvision.datasets.CIFAR1Q('data', train=True, download=True,
transform=Compose([ToTensor(), Normalize(0.5,
0.5)1))
val_dataset = torchvision.datasets.CIFAR10('data', train=False, download=True,
transform=Compose([ToTensor(), Normalize(0.5,
0.5)1))
elif args.data_name == 'cifarl00':
train_dataset = torchvision.datasets.CIFAR100('data', train=True, download=True,
transform=Compose([ToTensor(), Normalize(0.5,
0.5)1))
val_dataset = torchvision.datasets.CIFAR100('data', train=False, download=True,
transform=Compose([ToTensor(), Normalize(0.5,
0.5)1))
elif args.data_name == 'st110':
train_dataset = torchvision.datasets.STL10('data', transform=Compose([ToTensor(),
Normalize(@.5, 0.5)1), split="train', download=True)
val_dataset = torchvision.datasets.STL10('data', split='test', download=True,
transform=Compose([ToTensor(), Normalize(0.5, 0.5)]1))
dataloader = torch.utils.data.DatalLoader(train_dataset, load_batch_size, shuffle=True,

num_workers=4)

#dataloader,num_class,val_dataset = load_data(args.data_dir, args.data_name,True,
args.image_size, load_batch_size, 2)
writer = SummaryWriter(args.save_path + os.path.join('logs',args.data_name,
'mixup_feature_pretrain'))
device = 'cuda' if torch.cuda.is_available() else 'cpu’
if args.vit_type == "vit_tiny":
model = MAE_ViT(mask_ratio=args.mask_ratio,
image_size = args.image_size,
patch_size=args.patch_size).to(device)
elif args.vit_type == "vit_base":
model = MAE_ViT(mask_ratio=args.mask_ratio,
image_size=args.image_size,
patch_size=args.patch_size,
emb_dim = 768,
encoder_layer = 12,
encoder_head = 12,
decoder_layer = 6,

decoder_head = 12,).to(device)

optim = torch.optim.AdamW(model.parameters(), lr=args.base_learning_rate % args.batch_size / 256,
betas=(0.9, 0.95),

weight_decay=args.weight_decay)

140

1r_func = lambda epoch: min((epoch + 1) / (args.warmup_epoch + 1le-8),
0.5 * (math.cos(epoch / args.total_epoch * math.pi) + 1))

1r_scheduler = torch.optim.lr_scheduler.LambdaLR(optim, lr_lambda=1r_func, verbose=True)

step_count = 0

optim.zero_grad()

if os.path.exists(args.save_path + 'checkpoint.pth'):

checkpoint = torch.load(args.save_path + 'checkpoint.pth')

model. load_state_dict(checkpoint['model_state_dict'])

optim. load_state_dict(checkpoint['optimizer_state_dict'])

start_epoch = checkpoint['epoch']

loss = checkpoint['loss']

print("load previous model epoch {}".format(checkpoint['epoch']))
else:

start_epoch = 0

for e in range(start_epoch, args.total_epoch):
model.train()
losses = []
for img, label in tqdm(iter(dataloader)):
step_count += 1
img = img.to(device)
mixup_img = mixup_sobel_hog(img, lamda =args.lamda)
predicted_img, mask = model(img)
#loss = torch.mean((predicted_img - mixup_img) =* 2 * mask) / args.mask_ratio
loss = torch.mean((predicted_img — mixup_img) *x 2)
loss.backward()
if step_count % steps_per_update ==
optim.step()
optim.zero_grad()
losses.append(loss.item())
1r_scheduler.step()
avg_loss = sum(losses) / len(losses)
writer.add_scalar('mae_loss', avg_loss, global_step=e)

print(f'In epoch {e}, average traning loss is {avg_loss}.')

''"' visualize the first 16 predicted images on val dataset'''
model.eval()
with torch.no_grad():
val_img = torch.stack([val_dataset[i]l[@0] for i in range(48)])
val_img = val_img.to(device)
sobel_val_img = mixup_sobel_hog(val_img,lamda =args.lamda)

predicted_val_img, mask = model(val_img)

141

grid_4 = vutils.make_grid(predicted_val_img, nrow=8, padding=2, normalize=True)
predicted_val_img = predicted_val_img * mask + sobel_val_img * (1 - mask)

img = torch.cat([sobel_val_img * (1 - mask), predicted_val_img, sobel_val_imgl, dim=0)
img = rearrange(img, '(v hl wl) c hw —> c (hl h) (wl v w)', wl=2, v=3)

img_1 = torch.cat([val_img * (1 - mask),val_img,val_img * (1 - mask)], dim=0)

img_1 = rearrange(img_1, '(v h1 wl) ¢ hw —> ¢ (hl1 h) (wl v w)', wl=2, v=3)
writer.add_image('mae_image', (img + 1) / 2, global_step=e)

vutils.save_image(img.to(torch.device('cpu')), args.save_path + '"gen_image.png")

H O O OB ®

vutils.save_image(img_1.to(torch.device('cpu')), args.save_path + "masked_image.png")

grid = vutils.make_grid(val_img, nrow=8, padding=2, normalize=True)
grid_1 = vutils.make_grid(sobel_val_img, nrow=8, padding=2, normalize=True)
grid_2 = vutils.make_grid(predicted_val_img, nrow=8, padding=2, normalize=True)

grid_3 = vutils.make_grid(val_img * (1 - mask), nrow=8, padding=2, normalize=True)

writer.add_image('mask_image', grid_3, global_step=e)
writer.add_image('pred_image', grid_2, global_step=e)
writer.add_image('targ_image', grid_1, global_step=e)
writer.add_image('orig_image', grid, global_step=e)
vutils.save_image(grid.to(torch.device('cpu')), args.save_path + "real_image.png")

vutils.save_image(grid_1l.to(torch.device('cpu')), args.save_path + '"target_image.png")

vutils.save_image(grid_2.to(torch.device('cpu , args.save_path + "pred_image.png")

(()
(())
vutils.save_image(grid_3.to(torch.device('cpu')), args.save_path + '"masked_image.png")
vutils.save_image(grid_4.to(torch.device('cpu')), args.save_path + '"pred_image_1.png")

''' save model '"'

torch.save(model, args.save_path + args.model_path)

save checkpoint

checkpoint = {
'epoch': e + 1,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optim.state_dict(),
'loss': loss
¥
torch.save(checkpoint, args.save_path + 'checkpoint.pth')

Mixup_fineturing.py

import os

import argparse

import math

import torch

import torchvision

from torch.utils.tensorboard import SummaryWriter

from torchvision.transforms import ToTensor, Compose, Normalize

from tqdm import tqgdm

142

from model import x*

from utils import setup_seed

if __name__ == '__main__"':
parser = argparse.ArgumentParser()
parser.add_argument('—--seed', type=int, default=42)
parser.add_argument('--batch_size', type=int, default=128)
parser.add_argument('--max_device_batch_size', type=int, default=256)
parser.add_argument('--base_learning_rate', type=float, default=1le-3)
parser.add_argument('--weight_decay', type=float, default=0.05)
parser.add_argument('—-total_epoch', type=int, default=100)

(
(
(
(
(
(
parser.add_argument('—--warmup_epoch', type=int, default=5)
(
(
(
(
(

parser.add_argument('—--pretrained_model_path', type=str, default=None)
parser.add_argument('--output_model_path', type=str, default='vit-t-classifier-from_pertain.pt')
parser.add_argument('--save_path', type=str, default='./')
parser.add_argument('--pretrain_type', type=str, default="fine_turn")
parser.add_argument('--data_name', type=str, default='cifarlo')

args = parser.parse_args()

setup_seed(args.seed)

batch_size = args.batch_size

load_batch_size = min(args.max_device_batch_size, batch_size)

assert batch_size % load_batch_size ==

steps_per_update = batch_size // load_batch_size

train_dataset = torchvision.datasets.CIFAR10('data', train=True, download=True,
transform=Compose([ToTensor(), Normalize(0.5,

0.5)1))

val_dataset = torchvision.datasets.CIFAR10('data', train=False, download=True,

transform=Compose([ToTensor(), Normalize(0.5, 0.5)]))

train_dataloader = torch.utils.data.DatalLoader(train_dataset, load_batch_size, shuffle=True,
num_workers=4)

val_dataloader = torch.utils.data.DatalLoader(val_dataset, load_batch_size, shuffle=False,
num_workers=4)

device = 'cuda' if torch.cuda.is_available() else 'cpu'

if args.pretrain == "fine_turn":
model = torch.load(args.save_path + args.pretrained_model_path, map_location="'cpu')
writer = SummaryWriter(args.save_path + os.path.join('logs_s_b', args.data_name, 'mixup-
pretrain-cls'))
else:
model = MAE_ViT()

writer = SummaryWriter(args.save_path + os.path.join('logs',args.data_name, 'scratch-cls'))

143

model = ViT_Classifier(model.encoder, num_classes=10).to(device)

loss_fn = torch.nn.CrossEntropyLoss()

acc_fn = lambda logit, label: torch.mean((logit.argmax(dim=-1) == label).float())

optim = torch.optim.AdamW(model.parameters(), lr=args.base_learning_rate % args.batch_size / 256,
betas=(0.9, 0.999), weight_decay=args.weight_decay)
1r_func = lambda epoch: min((epoch + 1) / (args.warmup_epoch + 1le-8),
0.5 * (math.cos(epoch / args.total_epoch * math.pi) + 1))

1r_scheduler = torch.optim.lr_scheduler.LambdaLR(optim, lr_lambda=1r_func, verbose=True)

best_val_acc = 0

step_count = 0

optim.zero_grad()

RESRGFEZINE R XM

if os.path.exists(args.save_path + 'PF_checkpoint.pth'):
MBEZHNER

checkpoint = torch.load(args.save_path + 'PF_checkpoint.pth')

model. load_state_dict(checkpoint['model_state_dict'])

optim. load_state_dict(checkpoint['optimizer_state_dict'])

start_epoch = checkpoint['epoch']

loss = checkpoint['loss']

print("load previous model epoch {}".format(checkpoint['epoch']))
else:

start_epoch = 0

for e in range(start_epoch, args.total_epoch):
model.train()
losses = []
acces = []
for img, label in tqdm(iter(train_dataloader)):
step_count +=1
img = img.to(device)
label = label.to(device)
logits = model(img)
loss = loss_fn(logits, label)
acc = acc_fn(logits, label)
loss.backward()
if step_count % steps_per_update ==
optim.step()
optim.zero_grad()
losses.append(loss.item())
acces.append(acc.item())

1r_scheduler.step()

144

avg_train_loss = sum(losses) / len(losses)
avg_train_acc = sum(acces) / len(acces)
print(f'In epoch {e}, average training loss is {avg_train_loss}, average training acc is

{avg_train_acc}."')

model.eval()
with torch.no_grad():
losses = []
acces = []
for img, label in tqdm(iter(val_dataloader)):
img = img.to(device)
label = label.to(device)
logits = model(img)
loss = loss_fn(logits, label)
acc = acc_fn(logits, label)
losses.append(loss.item())
acces.append(acc.item())
avg_val_loss = sum(losses) / len(losses)
avg_val_acc = sum(acces) / len(acces)
print(f'In epoch {e}, average validation loss is {avg_val_loss}, average validation acc

is {avg_val_acc}.')

if avg_val_acc > best_val_acc:
best_val_acc = avg_val_acc
print(f'saving best model with acc {best_val_acc} at {e} epoch!"')

torch.save(model, args.save_path + args.output_model_path)

writer.add_scalars('cls/loss', {'train': avg_train_loss, 'val': avg_val_loss}, global_step=e)

writer.add_scalars('cls/acc', {'train': avg_train_acc, 'val': avg_val_acc}, global_step=e)

save checkpoint
RERER
checkpoint = {
'epoch': e + 1,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optim.state_dict(),
'loss': loss
¥
torch.save(checkpoint, args.save_path + 'PF_checkpoint.pth')

DMAE model.py

import torch
import timm

import numpy as np

from einops import repeat, rearrange

from einops.layers.torch import Rearrange

from timm.models.layers import trunc normal

from timm.models.vision transformer import Block

def random indexes(size : int):
forward indexes = np.arange(size)
np.random.shuffle (forward indexes)
backward_indexes = np.argsort (forward_ indexes)

return forward indexes, backward indexes

def take indexes(sequences, indexes):

return torch.gather (sequences, 0, repeat (indexes,

def add gaussian noise(patche, std = 0.9):
noise = torch.randn (patche.size()) * std
noisy patche = patche + noise.to(patche.device)

return noisy patche

class PatchNoise (torch.nn.Module) :
def init (self, Noiseratio) -> None:
super (). init ()

self.Noiseratio = Noiseratio

def forward(self, patches : torch.Tensor):

T, B, C = patches.shape

remain T = int(T * (1 - self.Noiseratio))
indexes = [random indexes(T) for _ in range(B)]
forward indexes = torch.as_ tensor(np.stack([i[0]

dtype=torch.long) .to (patches.device)

backward indexes = torch.as_ tensor (np.stack([i[1]

dtype=torch.long) .to (patches.device)

patches = take indexes(patches, forward indexes)

for i in range(remain T,T):

patches[i] = add gaussian noise(patches[i])

't b ->tbc',

for 1 in indexes], axis=-1),

for 1 in indexes], axis=-1),

return patches, forward_indexes, backward indexes,remain_T

class MAE Encoder (torch.nn.Module) :
def init (self,
image size=32,
patch size=2,

emb dim=192,

c=sequences.shape[-1]1))

145

146

num layer=12,
num_head=3,
mask_ratio=0.75,

) —-> None:

super (). init ()

self.

self.

emb dim))

def

def

self.

self.

self.

self.

self.

init

cls token = torch.nn.Parameter (torch.zeros(l, 1, emb dim))

pos_embedding = torch.nn.Parameter (torch.zeros((image size // patch size) ** 2, 1,

shuffle = PatchNoise (mask ratio)

patchify = torch.nn.Conv2d(3, emb dim, patch size, patch size)

transformer = torch.nn.Sequential (*[Block(emb dim, num head) for _ in range(num_ layer)])

layer norm = torch.nn.LayerNorm(emb dim)

init weight ()

weight (self):

trunc normal (self.cls token, std=.02)

trunc_normal (self.pos embedding, std=.02)

forward(self, img):

patches = self.patchify (img)
patches = rearrange (patches, 'b ¢ h w -> (h w) b c'")
patches = patches + self.pos embedding

patches, forward indexes, backward indexes,remain T = self.shuffle(patches)

patches = torch.cat([self.cls token.expand(-1, patches.shape([l], -1), patches], dim=0)

patches = rearrange(patches, 't b ¢ -> b t c'")
features = self.layer norm(self.transformer (patches))
features = rearrange (features, 'b t ¢ -> t b c'")

return features, backward indexes,remain T

class MAE Decoder (torch.nn.Module) :

def init (self,

image size=32,
patch size=2,
emb_dim=192,
num layer=4,

num_head=3,

147

) —-> None:

super (). init ()

self.mask token = torch.nn.Parameter (torch.zeros(l, 1, emb dim))
self.pos_embedding = torch.nn.Parameter (torch.zeros((image size // patch size) ** 2 + 1, 1,

emb dim))

self.transformer = torch.nn.Sequential (*[Block(emb_dim, num_head) for _ in range(num_layer)]

self.head = torch.nn.Linear (emb_dim, 3 * patch_size ** 2)
self.patch2img = Rearrange('(h w) b (c pl p2) -> b ¢ (h pl) (w p2)', pl=patch size,

p2=patch size, h=image size//patch size)

self.init weight ()

def init weight (self):
trunc_normal (self.mask token, std=.02)

trunc_normal (self.pos embedding, std=.02)

def forward(self, features, backward indexes,remain T):
T = features.shape[0]
backward indexes = torch.cat([torch.zeros(l, backward indexes.shape[l]).to(backward indexes),

backward indexes + 1], dim=0)

#features = torch.cat ([features, self.mask token.expand(backward indexes.shape[0] -
features.shape[0], features.shapell], -1)], dim=0)

features = take indexes(features, backward indexes)

features = features + self.pos embedding

features = rearrange (features, 't b ¢ -> b t c¢'")

features = self.transformer (features)

features = rearrange (features, 'b t ¢ -> t b c'")

features = features([l:] # remove global feature

patches = self.head(features)

mask = torch.zeros like (patches)

mask[remain T:] = 1

mask = take indexes (mask, backward indexes[l:] - 1)
img = self.patch2img (patches)

mask = self.patch2img (mask)

return img, mask

class MAE Teacher (torch.nn.Module) :
def init (self,
image size=32,

patch size=2,

148

emb_dim=192,
num layer=12,
num_head=3,

) —-> None:

super (). init ()

self.

self.

emb dim))

def

def

self.

self.

self.

self.

init

cls token = torch.nn.Parameter (torch.zeros(l, 1, emb dim))

pos_embedding = torch.nn.Parameter (torch.zeros((image size // patch size) ** 2, 1,

patchify = torch.nn.Conv2d(3, emb dim, patch size, patch size)

transformer = torch.nn.Sequential (* [Block(emb dim, num head) for _ in range(num_ layer)])

layer norm = torch.nn.LayerNorm(emb dim)

init weight ()

weight (self) :

trunc normal (self.cls token, std=.02)

trunc_normal (self.pos embedding, std=.02)

forward(self, img):

patches = self.patchify (img)

patches = rearrange (patches, 'b ¢ h w -> (h w) b c'")

patches = patches + self.pos embedding

patches = torch.cat([self.cls token.expand(-1, patches.shape([l], -1), patches], dim=0)

patches = rearrange (patches, 't b ¢ -> b t c'")
features = self.layer norm(self.transformer (patches))
features = rearrange (features, 'b t ¢ -> t b c'")

return features

class MAE ViT (torch.nn.Module) :

def init (self,

image size=32,
patch size=2,
emb_dim=192,
encoder layer=12,
encoder head=3,
decoder_ layer=4,
decoder head=3,
mask ratio=0.75,

) —> None:

super (). init ()

149

self.encoder = MAE Encoder (image size, patch size, emb dim, encoder layer, encoder head,

mask_ratio)

def

class V

def

def

if name ==

shu
a =

b,

self.decoder = MAE Decoder (image size, patch size, emb dim, decoder layer, decoder head)

forward (self, img):
features, backward indexes,remain T = self.encoder (img)
predicted img, mask = self.decoder (features, backward indexes,remain T)

return predicted img, mask, features

iT Classifier(torch.nn.Module) :
~_init (self, encoder : MAE Encoder, num classes=10) -> None:
super (). init ()

self.cls_token = encoder.cls_token
self.pos _embedding = encoder.pos_embedding
self.patchify = encoder.patchify
self.transformer = encoder.transformer
self.layer norm = encoder.layer_ norm

self.head = torch.nn.Linear (self.pos_embedding.shape[-1], num classes)

forward(self, img):

patches = self.patchify (img)

patches = rearrange (patches, 'b ¢ h w -> (h w) b c'")
patches = patches + self.pos embedding

patches = torch.cat([self.cls token.expand(-1, patches.shape([l], -1), patches], dim=0)

patches = rearrange (patches, 't b ¢ -> b t c'")
features = self.layer norm(self.transformer (patches))
features = rearrange (features, 'b t ¢ -> t b c¢'")

logits = self.head(features[0]

return logits

__main_':
ffle = PatchNoise (0.75)
torch.rand (16, 2, 10)

forward indexes, backward indexes, = shuffle(a)

print (backward indexes.shape)

img

= torch.rand (2, 3, 32, 32)

encoder = MAE_Encoder ()

decoder = MAE Decoder ()

tea

cher network = MAE Teacher ()

features, backward indexes,remain T = encoder (img)

features2= teacher network(img)

print (features2.shape)

print (features.shape)

150

predicted img, mask = decoder (features, backward indexes,remain T)
print (predicted img.shape)

print (mask.shape)

loss = torch.mean((predicted img - img) ** 2) + torch.mean((features2 - features) ** 2)

print (loss)

DMAE Pretrain.py

impo
impo
impo
impo
impo
from
from

from

from
from
from

from

if name ==

rt os

rt argparse

rt math

rt torch

rt torchvision

torch.utils.tensorboard import SummaryWriter
torchvision.transforms import ToTensor, Compose, Normalize

tgdm import tgdm

model import *
utils import setup seed,cosine scheduler
torchvision import utils as vutils

PIL import Image

main :

parser = argparse.ArgumentParser ()

parser.add argument ('--seed', type=int, default=42)
parser.add argument ('--patch size', type=int, default=2)
parser.add argument ('--batch size', type=int, default=2048)
parser.add argument ('--max device batch size', type=int, default=128)
parser.add argument ('--base learning rate', type=float, default=1.5e-4)
parser.add argument ('--weight decay', type=float, default=0.05)
parser.add argument ('--mask ratio', type=float, default=0.75)
parser.add argument ('--total epoch', type=int, default=500)
parser.add argument ('--warmup epoch', type=int, default=20)
parser.add argument ('--model path', type=str, default='noise-mae.pt')
parser.add argument ('--data name', type=str, default='cifarl0'")
parser.add argument ('--vit type', type=str, default="vit-tiny")
parser.add_argument ('--save path', type=str, default='")
parser.add argument ('--image size', type=int, default=32)

args = parser.parse_args()

setup seed(args.seed)

batch_size = args.batch_size

load_batch_size = min(args.max_device batch size, batch_size)

151

)

assert batch_size % load_batch_size == 0

steps per update = batch size // load batch size

if args.data_name == 'cifarlO':
train dataset = torchvision.datasets.CIFAR10('data', train=True, download=True,

transform=Compose ([ToTensor (), Normalize (0.5,

0.5)1))
val dataset = torchvision.datasets.CIFAR1O('data', train=False, download=True,
transform=Compose ([ToTensor (), Normalize (0.5,
0.5)1))
elif args.data _name == 'cifarl00':
train dataset = torchvision.datasets.CIFAR100('data', train=True, download=True,
transform=Compose ([ToTensor (), Normalize (0.5,
0.5)1))
val dataset = torchvision.datasets.CIFAR100('data', train=False, download=True,
transform=Compose ([ToTensor (), Normalize (0.5,
0.5)1))
elif args.data name == 'stll0':

train_dataset = torchvision.datasets.STL10('data', transform=Compose ([ToTensor (),
Normalize (0.5, 0.5)]), split='train', download=True)
val dataset = torchvision.datasets.STL10('data', split='test', download=True,

transform=Compose ([ToTensor (), Normalize (0.5, 0.5)1]1))

dataloader = torch.utils.data.DataLoader (train dataset, load batch size, shuffle=True,

num workers=4)

#dataloader,num class,val dataset = load data(args.data dir, args.data name, True,

args.image size, load batch size, 2)

writer = SummaryWriter (args.save path + os.path.join('logs',args.data name, 'n mae pretrain'))
device = 'cuda' if torch.cuda.is_available() else 'cpu'
if args.vit type == "vit tiny":

student model = MAE ViT (mask ratio=args.mask ratio,

image size = args.image size,

patch size=args.patch size).to(device)
teacher _model = MAE_ Teacher (image_size = args.image_size,

patch size=args.patch size).to(device)

elif args.vit type == "vit base":

student model = MAE ViT (mask ratio=args.mask ratio,
image size=args.image size,

patch size=args.patch size,

emb _dim = 768,

encoder layer = 12,

encoder head = 12,

teacher model =

#H H H H FH FHE =

optim =
args.batch size / 256, betas=(0.9,
lr_func = lambda epoch:

args.total epoch * math.pi) + 1))

lr scheduler =

step count = 0

optim.zero grad()

momentum schedule =

REEZERFEIINRERXMF

decoder_ head

MAE_Teacher (image_size =

torch.optim.AdamW (student model.parameters(),

min((epoch + 1) /

torch.optim.lr scheduler.LambdalLR (optim,

cosine scheduler (0.96,

decoder layer = 6,

= 12,) .to(device)

args.image size,
patch size=args.patch size,
emb_dim = 768,
num layer = 12,

num_head = 12,) .to(device)

0.95), weight decay=args.weight decay)

(args.warmup_epoch + le-8),

0.99,args.total epoch, 1)

if os.path.exists(args.save path + 'student checkpoint.pth'):

M ZAIAYstudent_model

checkpoint s =

student model.load state dict (checkpoint s['model state dict'])

optim.load state dict (checkpoint s['optimizer state dict'])

start epoch =
loss = checkpoint s['loss']
fIEZ AT teacher_model

checkpoint t =

checkpoint s['epoch']

teacher model.load state dict(checkpoint t['model state dict'])

0.

torch.load(args.save path + 'student checkpoint.pth')

torch.load(args.save path + 'teacher checkpoint.pth')

print ("load previous model epoch {}".format (checkpoint s['epoch']))

else:

start _epoch = 0

ema update teacher

for e in range (args.total epoch):

student model.train()

losses = []

m = momentum schedulele]

for img,
step_count += 1
img = img.to(device)

#teacher network

features t =

#mae student

label in tgdm(iter (dataloader)) :

teacher model (img)

5

*

152

lr=args.base learning rate *

(math.cos (epoch /

lr_lambda=lr_func, verbose=True)

153

predicted img, mask, features s = student model (img)
#new loss

loss = torch.mean((predicted img - img) ** 2) + torch.mean((features t - features s) **

loss.backward()

with torch.no grad():
for param s, param t in zip(student model.encoder.parameters(),

teacher model.parameters()) :

param_ t.data.mul (m).add ((1 - m) * param s.detach() .data)
if step count % steps per update == 0:
optim.step ()

optim.zero grad()

losses.append(loss.item())

with torch.no grad():
for param s, param t in zip(student model.encoder.parameters (),
teacher model.parameters()) :

param_t.data.mul (m).add ((1 - m) * param s.detach() .data)

lr scheduler.step()
avg_loss = sum(losses) / len(losses)
writer.add scalar('mae loss', avg loss, global step=e)

print (£'In epoch {e}, average traning loss is {avg loss}.')

visualize the first 16 predicted images on val dataset'''
student model.eval ()
with torch.no grad():

val img = torch.stack([val dataset[i][0] for i in range (48)])

val img = val img.to (device)
predicted val img, mask, = student model (val img)
predicted val_img = predicted val_img * mask + val_img * (1 - mask)

grid = vutils.make grid(val img, nrow=8, padding=2, normalize=True)
grid 2 = wvutils.make grid(predicted val img, nrow=8, padding=2, normalize=True)

grid 3 = wvutils.make grid(val img * (1 - mask), nrow=8, padding=2, normalize=True)

img = torch.cat([val img * (1 - mask), predicted val img, val img], dim=0)
img = rearrange(img, '(v hl wl) ¢ h w -> ¢ (hl h) (wl v w)', wl=2, v=3)

writer.add image('mae image', (img + 1) / 2, global step=e)

154

vutils.save image (img.to(torch.device('cpu')), args.save path + "image.png")
vutils.save image (grid.to(torch.device('cpu')), args.save path + "1 image.png")
vutils.save image (grid 2.to(torch.device('cpu')), args.save path + "2 image.png")
vutils.save image (grid 3.to(torch.device('cpu')), args.save path + "3 image.png")

save model
torch.save (student model, args.model path)
checkpoint student = {
'epoch': e + 1,
'model state dict': student model.state dict(),
'optimizer state dict': optim.state dict(),
'loss': loss
}

torch.save (checkpoint student, args.save path + 'student checkpoint.pth')

checkpoint teacher = {
'model state dict': teacher model.state dict()
}

torch.save (checkpoint teacher, args.save path + 'teacher checkpoint.pth')

Chapter 4 Experimental Part Code
Mixup pretrain_med.py

import
import
import
import

import

os
argparse
math
torch

torchvision

from torch.utils.tensorboard import SummaryWriter

from torchvision.transforms import ToTensor, Compose, Normalize

from tgdm import tgdm

from torchvision import utils as wvutils

import

import

torchvision.transforms as transforms

torchvision.datasets as datasets

from torch.utils.data import Dataset, DataLoader

import

tifffile as tiff

from model import *

from utils import setup seed,CovidCTDataset

if name ==

main :

parser = argparse.ArgumentParser ()

parser.add argument ('--seed', type=int, default=42)
parser.add argument ('--batch size', type=int, default=2048)
parser.add argument ('--max device batch size', type=int, default=256)

parser.add argument ('--base learning rate', type=float, default=1.5e-4)

155

parser.add argument ('--weight decay', type=float, default=0.05)
parser.add argument ('--mask ratio', type=float, default=0.6)
parser.add argument ('--total epoch', type=int, default=800)
parser.add argument ('--warmup epoch', type=int, default=50)
parser.add argument ('--model path', type=str, default='vit mae sobel Hog feature.pt')
parser.add argument ('--save path', type=str, default='./")

args = parser.parse_args()

setup seed(args.seed)

batch_size = args.batch_size
load_batch_size = min(args.max_device batch size, batch_size)
assert batch_size % load_batch_size == 0

steps per update = batch size // load batch size

dataPath = "/content/CT data"

CT data name = os.listdir (dataPath)

targetpath = "/content/CT data mixup features targets"

IS

trainCT_COVID = CT_data_name[0:60000]

valCT_COVID = CT_data_name[60000:]

normalize = transforms.Normalize (mean=[0.45271412, 0.45271412, 0.45271412],

std=[0.33165374, 0.33165374, 0.33165374])

tar_transform = transforms.Compose ([
transforms.Resize ((224, 224)), # Resize the image
transforms.ToTensor () # Convert the image to a tensor

1)

train_transformer = transforms.Compose ([
transforms.Resize ((224,224)),
transforms.RandomResizedCrop ((224),scale=(0.5,1.0)),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter (brightness=0.2, contrast=0.2),
transforms.ToTensor (),

normalize

val_transformer = transforms.Compose ([
transforms.Resize ((224,224)),
transforms.ToTensor (),

normalize

train_dataset = CovidCTDataset (data_dir=dataPath,

156

target dir=targetpath,
txt path= trainCT COVID,
transform= train transformer,
tar transform =tar transform)
val dataset = CovidCTDataset (data_dir=dataPath,
target dir=targetpath,
txt path=valCT COVID,
transform= val transformer,
tar transform =tar transform)
dataloader = torch.utils.data.DataLoader (train dataset, load batch size, shuffle=True,
num workers=4)

writer = SummaryWriter (args.save path + os.path.join('logs s b', 'ct', 'mae feature -pretrain'))

device = 'cuda' if torch.cuda.is_available() else 'cpu
model = MAE ViT (mask ratio=args.mask ratio).to(device)
optim = torch.optim.AdamW (model.parameters(), lr=args.base learning rate * args.batch size / 256,
betas=(0.9, 0.95), weight decay=args.weight decay)
lr func = lambda epoch: min((epoch + 1) / (args.warmup epoch + le-8), 0.5 * (math.cos(epoch /
args.total epoch * math.pi) + 1)

lr scheduler = torch.optim.lr scheduler.LambdalR(optim, lr lambda=lr func, verbose=True)

step count = 0

optim.zero grad()

RERRHFEZIINRE S X4
if os.path.exists(args.save path+'checkpoint.pth'):

MBEZATAIRE R

checkpoint = torch.load(args.save path+'checkpoint.pth'")

model.load state dict (checkpoint['model state dict'])

optim.load state dict (checkpoint['optimizer state dict'])

start epoch = checkpoint['epoch']

loss = checkpoint['loss']

print ("load previous model epoch {}".format (checkpoint['epoch']))
else:

start _epoch = 0

for e in range(start epoch,args.total epoch):
model.train ()
losses = []
for img,mixup img in tgdm(iter (dataloader)) :
step_count += 1
img = img.to(device)
mixup img = mixup img.to(device)

mixup img = tar

157

predicted img, mask = model (img)
loss = torch.mean((predicted img - mixup img) ** 2 * mask) / args.mask ratio
loss.backward()
if step count % steps per update == 0:
optim.step ()

optim.zero grad()

losses.append(loss.item())

lr scheduler.step ()

avg_loss = sum(losses) / len(losses)

writer.add scalar('mae loss', avg loss, global step=e)

print (£'In epoch {e}, average traning loss is {avg loss}.')

visualize the first 16 predicted images on val dataset'''

model.eval ()

with torch.no grad():

val img = torch.stack([val dataset[i][0] for i in range (48)])

val _img = val_img.to(device)

sobel val img = torch.stack([val dataset[i][1] for i1 in range(48)1])
sobel val img = sobel val img.to (device)

predicted val img, mask = model (val img)

grid 4 = vutils.make grid(predicted val img, nrow=8, padding=2, normalize=True)

predicted val img = predicted val img * mask + sobel val img * (1 - mask)

grid = vutils.make grid(val img, nrow=8, padding=2, normalize=True)

grid 1 = vutils.make grid(sobel val img, nrow=8, padding=2, normalize=True)
grid 2 = vutils.make grid(predicted val img, nrow=8, padding=2, normalize=True)
grid 3 = vutils.make grid(val img * (1 - mask), nrow=8, padding=2, normalize=True)

writer.add image('mask image', grid 3, global step=e)
writer.add image('pred image', grid 2, global step=e)
writer.add image('targ image', grid 1, global step=e)

writer.add image('orig image', grid, global step=e)

vutils.save image (grid.to(torch.device('cpu')), args.save path + "real image.png")
vutils.save image (grid 1l.to(torch.device('cpu')), args.save path + "target image.png")
vutils.save image (grid 2.to(torch.device('cpu')), args.save path + "pred image.png")
vutils.save image (grid 3.to(torch.device('cpu')), args.save path + "masked image.png")
vutils.save image (grid 4.to(torch.device('cpu')), args.save path + "pred image 1.png")

save model

torch.save (model, args.save path+args.model path)

save checkpoint

checkpoint = {

'epoch': e + 1,
'model state dict': model.state dict(),
'optimizer state dict': optim.state dict(),

'loss': loss

158

torch.save (checkpoint, args.save path+'checkpoint.pth')
classification_mixup _med.py
import os
import argparse
import math
import torch
import torchvision
from torch.utils.tensorboard import SummaryWriter
from torchvision import transforms

from tgdm import tgdm

from model import *

from utils import setup seed,CovidCTDataset for down task
from torch.utils.data import Dataset, DataLoader

from sklearn.metrics import roc auc score, fl score

if name == "' main ':

parser = argparse.ArgumentParser ()

parser.add argument ('--seed', type=int, default=42)

parser.add argument ('--batch size', type=int, default=512)

parser.add argument ('--max device batch size', type=int, default=256)

parser.add argument ('--base learning rate', type=float, default=le-3)
parser.add argument ('--weight decay', type=float, default=0.05)
parser.add argument ('--total epoch', type=int, default=100)
parser.add argument ('--warmup epoch', type=int, default=5)

parser.add argument ('--pretrained model path', type=str, default=None)

parser.add argument ('--output model path', type=str, default='classifier-from pertain.pt')
parser.add argument ('--save path', type=str, default='./")

args = parser.parse_args()

setup seed(args.seed)

batch size = args.batch size
load_batch_size = min(args.max_device batch size, batch_size)
assert batch_size % load_batch_size == 0

steps per update = batch size // load batch size

#Ht WOHIEE

filetrainPath COVID = "/content/train/CT COVID"
filetrainpath NO COVID = "/content/train/CT NonCOVID"
filetestPath COVID = "/content/test/CT COVID"

filetestpath NO COVID = "/content/test/CT NonCOVID"

filevalPath COVID = "/content/val/CT COVID"

filevalpath NO COVID = "/content/val/CT NonCOVID"

159

CT train COVID name = os.listdir(filetrainPath COVID)
CT_train NonCOVID name = os.listdir(filetrainpath NO_COVID)
CT test COVID name = os.listdir(filetestPath COVID)

CT_ test NonCOVID name = os.listdir(filetestpath NO COVID)
CT val COVID name = os.listdir(filevalPath COVID)

CT_val NonCOVID name = os.listdir(filevalpath NO_ COVID)

normalize = transforms.Normalize (mean=[0.45271412, 0.45271412, 0.45271412],

std=[0.33165374, 0.33165374, 0.33165374])

train_transformer = transforms.Compose ([
transforms.Resize (256),
transforms.RandomResizedCrop ((224),scale=(0.5,1.0)),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter (brightness=0.2, contrast=0.2),
transforms.ToTensor (),

normalize

val_transformer = transforms.Compose ([
transforms.Resize ((224,224)),
transforms.ToTensor (),

normalize

trainset = CovidCTDataset for down task(root dir='/content/train/',
txt COVID= CT train COVID name,
txt NonCOVID=CT train NonCOVID name,
transform= train transformer)

valset = CovidCTDataset for down task(root dir='/content/val/',
txt COVID=CT val COVID name,
txt NonCOVID=CT val NonCOVID name,
transform= val transformer)

testset = CovidCTDataset for down task(root dir='/content/test/',
txt COVID=CT test COVID name ,
txt NonCOVID=CT test NonCOVID name ,
transform= val transformer)

print ("X EINGEEIENE ", trainset. len ()

print ("X ERIEEEEIENE ", valset. len ()

print ("IN EMREEIENE - ", testset._len ()

160

FRNEIE

train loader = DatalLoader (trainset, batch size=load batch size , drop last=False, shuffle=True)
val loader = DataLoader (valset, batch size=load batch size , drop last=False, shuffle=True)
test loader = DataLoader (testset, batch size=load batch size, drop last=False, shuffle=False)
device = 'cuda' if torch.cuda.is_available() else 'cpu'

model = torch.load(args.save path + args.pretrained model path, map location='cpu')

writer = SummaryWriter (args.save path + os.path.join('logs', 'pretrain mixup mdoel'))

model = ViT Classifier (model.encoder, num classes=2) .to(device)
loss _fn = torch.nn.CrossEntropyLoss ()
acc_fn = lambda logit, label: torch.mean((logit.argmax(dim=-1) == label).float())
optim = torch.optim.AdamW (model.parameters(), lr=args.base learning rate * args.batch size / 256,
betas=(0.9, 0.999), weight decay=args.weight decay)
lr func = lambda epoch: min((epoch + 1) / (args.warmup epoch + le-8),
0.5 * (math.cos(epoch / args.total epoch * math.pi) + 1))

lr scheduler = torch.optim.lr scheduler.LambdalR(optim, lr lambda=lr func, verbose=True)

best val acc = 0

step count = 0

optim.zero grad()

REREHFEZIINEE A XY

if os.path.exists(args.save path + 'PF checkpoint.pth'):

B ZATAIRE S

checkpoint = torch.load(args.save path + 'PF checkpoint.pth')
model.load state dict (checkpoint['model state dict'])

optim.load state dict (checkpoint['optimizer state dict'])

start epoch = checkpoint['epoch']

loss = checkpoint['loss']

print ("load previous fineturn model epoch {}".format (checkpoint|['epoch']))
else:

start _epoch = 0

for e in range(start epoch, args.total epoch):

model.train ()

losses = []

acces = []

for batch_samples in tgdm(iter (train_loader)) :
step_count += 1
img = batch samples['img'].to (device)
label = batch samples['label'].to(device)
logits = model (img)
loss = loss_fn(logits, label)
acc = acc_fn(logits, label)
loss.backward()
if step count % steps per update == 0:

optim.step ()

print (f'In epoch {e},

optim.zero grad()

losses.append(loss.item())
acces.append (acc.item())

lr scheduler.step()

avg_train loss = sum(losses) / len(losses)

avg_train acc = sum(acces) / len(acces)

{avg_train acc}.')

is

print (f'In epoch {e},

torch.save (model,

model.eval ()
with torch.no grad():
losses = []

acces = []

=[]
=[]

for batch_samples in tgdm(iter(val_ loader)) :

img = batch samples['img'].to (device)

label = batch samples['label'].to(device)
logits = model (img)

loss = loss_fn(logits, label)

acc = acc_fn(logits, label)

logits np = logits.cpu() .detach () .numpy ()
label np = label.cpu().detach () .numpy ()

auc = roc_auc_score(label np,logits np[:, 1])
fl1 = f1 score(label np,np.argmax(logits np, axis=1))
losses.append(loss.item())

acces.append (acc.item())

fls.append(fl)

AUCs.append (auc)

avg val loss = sum(losses) / len(losses)
avg val acc = sum(acces) / len(acces)
avg fl = sum(fls) / len(fls)

avg_auc = sum(AUCs) / len(AUCs)

{avg_val acc},average fl {avg fl},avg auc {avg auc}')

if avg_val_acc > best_val acc:

best val acc = avg val acc

writer.add scalars('cls/loss', {'train': avg train loss, 'val':
writer.add scalars('cls/acc', {'train': avg train acc, 'val':
writer.add scalars('cls/fl', {'val': avg fl}, global step=e)

writer.add scalars('cls/auc', {'val': avg auc}, global step=e)
save checkpoint

RERER

average training loss is {avg_train loss},

average validation loss is {avg val loss},

args.save path + args.output model path)

print (f'saving best model with acc {best val acc} at {e} epoch!')

avg_val acc},

161

average training acc is

average validation acc

avg_val loss}, global_ step=e)

global step=e)

checkpoint = {

}

'epoch': e + 1,
'model state dict': model.state dict(),
'optimizer state dict': optim.state dict(),

'loss': loss

torch.save (checkpoint, args.save path + 'PF checkpoint.pth')

imbalance study mixup.py

impo
impo
impo
impo

impo

rt os

rt argparse

rt math

rt torch

rt torchvision

from torch.utils.tensorboard import SummaryWriter

from

from

from

from

from

from

if name ==

torchvision import transforms

tgdm import tgdm

model

utils

torch.

import *
import setup seed,CovidCTDataset for down task

utils.data import Dataset, Dataloader

sklearn.metrics import roc_auc score, fl score

parser

parser

parser.

parser

parser

parser.

parser.

parser

parser

parser.

parser

parser.

args =

main :

= argparse.ArgumentParser ()

.add_argument ('--seed', type=int, default=42)

add_argument ('--batch size', type=int, default=256)
.add_argument ('--max device batch size', type=int, default=128)
.add_argument ('--base learning rate', type=float, default=le-3)
add_argument ('--weight decay', type=float, default=0.05)
add_argument ('--total epoch', type=int, default=400)
.add_argument ('--warmup epoch', type=int, default=5)
.add_argument ('--pretrained model path', type=str, default=None)
add argument ('--output model path', type=str, default='classifier-from pertain.pt')
.add_argument ('--save path', type=str, default='./"')
add_argument ('--imblance', type=str, default='1l-1")

parser.parse_args ()

setup seed(args.seed)

batch_size = args.batch_size

load_batch_size = min(args.max_device batch size, batch_size)

assert

)

batch_size % load batch_size == 0

steps per update = batch size // load batch size

162

163

dataset

filePath COVID = "/content/COVID"
filepath NO COVID = "/content/non-COVID"
CT_COVID name = os.listdir(filePath COVID)
CT_NonCOVID name = os.listdir(filepath NO COVID)
print ("COVID", len (CT_COVID name))

print ("non-COVID", len (CT_NonCOVID name))

train count = 1000

if args.imblance == "1-1":
train count = 1000

elif args.imblance == "2-1":
train count = 500

elif args.imblance == "4-1":
train count = 250

elif args.imblance == "8-1":

train count = 125

trainCT_COVID = CT_COVID name[0O:train_count]
valCT COVID = CT_COVID name[1000:]
trainCT NonCOVID = CT NonCOVID name[0:1000]

valCT NonCOVID = CT_NonCOVID name[1000:]

normalize = transforms.Normalize (mean=[0.45271412, 0.45271412, 0.45271412],

std=[0.33165374, 0.33165374, 0.33165374])

HERIGIR

train_transformer = transforms.Compose ([
transforms.Resize (256),
transforms.RandomResizedCrop ((224),scale=(0.5,1.0)),
transforms.RandomHorizontalFlip(),
transforms.ColorJitter (brightness=0.2, contrast=0.2),
transforms.ToTensor (),

normalize

val_transformer = transforms.Compose ([
transforms.Resize ((224,224)),
transforms.ToTensor (),

normalize

trainset = CovidCTDataset for down task(root dir='/content/',
txt COVID= trainCT COVID,

txt NonCOVID=trainCT NonCOVID,

164

transform= train transformer)
valset = CovidCTDataset for_ down_task(root_dir='/content/',

txt COVID=valCT COVID,

txt NonCOVID=valCT NonCOVID,

transform= val transformer)

#load data
train loader = DatalLoader (trainset, batch size=load batch size, drop last=False, shuffle=True)

val loader = DataLoader (valset, batch size=load batch size, drop last=False, shuffle=True)

device = 'cuda' if torch.cuda.is_available() else 'cpu

model = torch.load(args.save path + args.pretrained model path, map location='cpu')

writer = SummaryWriter (args.save path + os.path.join('logs', 'pretrain mae mdoel'))

model = ViT Classifier (model.encoder, num classes=2) .to(device)

loss _fn = torch.nn.CrossEntropyLoss ()

acc_fn = lambda logit, label: torch.mean((logit.argmax(dim=-1) == label).float())

optim = torch.optim.AdamW (model.parameters(), lr=args.base learning rate * args.batch size / 256,
betas=(0.9, 0.999), weight decay=args.weight decay)
lr func = lambda epoch: min((epoch + 1) / (args.warmup epoch + le-8),
0.5 * (math.cos(epoch / args.total epoch * math.pi) + 1))

lr scheduler = torch.optim.lr scheduler.LambdalR(optim, lr lambda=lr func, verbose=True)

best val acc = 0

step count = 0

optim.zero grad()

REREHFEZIINEE A XY

if os.path.exists(args.save path + 'PF checkpoint.pth'):

MBEZATAIRE R

checkpoint = torch.load(args.save path + 'PF checkpoint.pth')
model.load state dict (checkpoint['model state dict'])

optim.load state dict (checkpoint['optimizer state dict'])

start epoch = checkpoint['epoch']

loss = checkpoint['loss']

print ("load previous fineturn model epoch {}".format (checkpoint|['epoch']))
else:

start _epoch = 0

for e in range(start epoch, args.total epoch):

165

model.train ()
losses = []
acces = []
for batch_samples in tgdm(iter (train_loader)) :
step_count += 1
img = batch samples['img'].to (device)
label = batch samples['label'].to(device)
logits = model (img)
loss = loss_fn(logits, label)
acc = acc_fn(logits, label)
loss.backward()
if step count % steps per update == 0:
optim.step ()
optim.zero grad()
losses.append(loss.item())
acces.append (acc.item())

lr scheduler.step ()

avg_train loss = sum(losses) / len(losses)
avg_train acc = sum(acces) / len(acces)
print (£'In epoch {e}, average training loss is {avg_train loss}, average training acc is

{avg_train acc}.')

model.eval ()
with torch.no grad():
losses = []
acces = []
fls = []
AUCs = []
for batch_samples in tgdm(iter(val_ loader)) :
img = batch samples['img'].to (device)
label = batch samples['label'].to(device)
logits = model (img)
loss = loss_fn(logits, label)
acc = acc_fn(logits, label)
logits np = logits.cpu() .detach() .numpy ()
label np = label.cpu().detach () .numpy ()
auc = roc_auc_score (label np,logits np[:, 1])
fl1 = f1 score(label np,np.argmax(logits np, axis=1))
losses.append(loss.item())
acces.append (acc.item())
fls.append(fl)

AUCs.append (auc)

avg val loss = sum(losses) / len(losses)
avg val acc = sum(acces) / len(acces)
avg fl = sum(fls) / len(fls)

avg_auc = sum(AUCs) / len(AUCs)

166

print (£'In epoch {e}, average validation loss is {avg val loss}, average validation acc

{avg_val acc},average fl {avg fl},avg auc {avg auc}')

if avg_val_acc > best_val acc:
best val acc = avg val acc
print (f'saving best model with acc {best val acc} at {e} epoch!"')

torch.save (model, args.save path + args.output model path)

writer.add scalars('cls/loss', {'train': avg train loss, 'val': avg val loss}, global step=e)
writer.add scalars('cls/acc', {'train': avg train acc, 'val': avg val acc}, global step=e)
writer.add scalars('cls/fl', {'val': avg fl}, global step=e)
writer.add scalars('cls/auc', {'val': avg auc}, global step=e)
save checkpoint
t RERER
checkpoint = {
'epoch': e + 1,
'model state dict': model.state dict(),
'optimizer state dict': optim.state dict(),
'loss': loss
}

torch.save (checkpoint, args.save path + 'PF checkpoint.pth')

167

APPENDIX B

List of publications

. Jiashu Xu and Sergii Stirenko, (2023) "Mixup Feature: A Pretext Task Self-
Supervised Learning Method for Enhanced Visual Feature Learning," in [IEEE
Access, vol. 11, pp. 82400-82409, IEEE, ISSN: 2169-3536, DOI:
10.1109/ACCESS.2023.3301561 (Scopus Q1,WoS Q2).

. Jiashu Xu, Sergii Stirenko, (2023) "Denoising Self-Distillation Masked
Autoencoder for Self-Supervised Learning", International Journal of Image,
Graphics and Signal Processing (IJIGSP), Vol.15, No.5, pp. 29-38. MECS
Press, ISSN:2074-9074, DOI:10.5815/1jigsp.2023.05.03 (Scopus)

. Jiashu Xu, Sergii Stirenko, (2022) "Self-Supervised Model Based on Masked
Autoencoders Advance CT Scans Classification", International Journal of
Image, Graphics and Signal Processing (IJIGSP), Vol.14, No.5, pp. 1-9.
MECS Press, ISSN:2074-9074, DOI:10.5815/1jigsp.2022.05.01 (Scopus)

. Jiashu Xu. (2021) "A review of self-supervised learning methods in the field
of medical image analysis." International Journal of Image, Graphics and
Signal Processing (IJIGSP) 13, no. 4: 33-46. MECS Press, ISSN:2074-9074,
10.5815/1jigsp.2021.04.03 (Scopus).

. Yahu Yang, Hu Zhang, Jiashu Xu, Shenmin Song, (2023), “MATEKG: A
Large-scale Multi-class Equipment Knowledge Graph for Military Auxiliary
Tasks.” 2023 IEEE 6th International Conference on Information Systems and

Computer Aided Education (ICISCAE), Dalian, China. (Scopus).

168

6. Yang, Ya-Hu, Jiashu Xu, Yuri Gordienko, and Sergii Stirenko. (2021).
"Abnormal Interference Recognition Based on Rolling Prediction Average
Algorithm." Advances in Computer Science for Engineering and Education
III. ICCSEEA 2020. Advances in Intelligent Systems and Computing, vol
1247. Springer, Cham. https://doi.org/10.1007/978-3-030-55506-1 28
(Scopus)

7. Jiashu Xu, Sergii Stirenko, (2020), "FACIAL EXPRESSION
RECOGNITION SYSTEM BASED ON GAN NETWORK DATA
AUGMENTATION", The International Conference on Security, Fault

Tolerance, Intelligence 2020, pp. 144-149.

